
                      International Journal of Engineering Applied Sciences and Technology, 2018    
                                               Vol. 3, Issue 4, ISSN No. 2455-2143, Pages 1-13 

                           Published Online August 2018 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
 

1 

 

NUMERICAL SIMULATION OF THERMALLY 

DEVELOPING TURBULENT FLOW INSIDE A 

CIRCULAL TUBE 

       Ali Belhocine                                                             Oday Ibraheem Abdullah 

      Department of Mechanical Engineering                   System Technologies and Mechanical Design Methodology 
  University of Sciences and Technology of Oran                                        Hamburg University of Technology 

L.P 1505 El -Mnaouer, USTO 31000 Oran (Algeria)                                               Hamburg Germany 

 
 

Abstract— A numerical study was conducted using the finite 

difference technique to examine the mechanism of energy 

transfer as well as turbulence in the case of turbulent flow 

fully developed in the channel with substantially constant 

wall temperature and constant heat flow conditions. The 

methodology of solving the thermal problem is based on 

the equation of energy for a fluid of constant properties by 

placing itself in the equilibrium hypothesis of an 

axisymmetric. The global equations and the initial and 

boundary conditions acting on the problem are configured 

in dimensionless form in order to predict the 

characteristics of the turbulent fluid flow inside the tube. 

Thus, using Thomas' algorithm, a program in FORTRAN 

version 95 was developed to numerically solve the 

discretized form of the system of equations describing the 

problem. Finally, using this elaborate program, we were 

able to simulate the flow characteristics, changing some 

parameters involved such as Reynolds number, the 

Prandtl number and the Peclet number, along the 

longitudinal coordinate to obtain important results of the 

thermal model. These are discussed in detail in this work. 

Comparisons between literatures correlation data and the 

calculated simulation indicate that the results are a good 

match to previously published quantities. 

 

Keywords— Finite difference method, Nusselt number, 
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I.  INTRODUCTION 

Turbulent flow is a state of fluid moving in the direction of the 

flow guide, but with non-rectilinear trajectories. There will be 

trajectory crossings for all layers of fluid volume in motion 

which causes interactions between the fluid volumes and 

collisions on the walls of the flow guide. These collisions can 
cause noise. This type of flow is very hard to analyze. The 

modeling of turbulent fluid flows is an essential step for both 

mechanics and the field of engineering. We can meet them in 

various engineering applications, such as; sewage collection, 

drilling hydraulics, heat exchanger apparatus, treatment of 

polymer products and mineral oil, blood flow in the veins and 

arteries as well as other thermal applications with a very 

severe transfer rate. For the stationary case in a cylindrical 

tube, fully developed turbulent flows have been studied 

numerically by several authors using computer-based 

computation and simulation at different Reynolds numbers. 

These are to better understand the thermal problems are such 

flow. Several studies (Zhou et al.,2017; Wei et al.,2005;  

Everts & Meyer, (2018a, 2018b) ; Aravinth , 2000 ; Teitel & 
Antonia,1993; Koizumi, 2002) either digital or experiment on 

fully developed turbulent channel flows were conducted 

previously. Gnielinski (1973) developed equations describing 

both the fully developed region of the flow and the transition 

region through channels and pipes. These were then compared 

to experimental results for high Reynolds and Prandlt 

numbers. Correlations valid for the transient regime and the 

fully developed turbulent flow subjected to a uniform heat flux 

through a circular tube, have been developed in the work of 

Taler (2016) for Reynolds numbers Re, and Prandtl Pr and of 

which the number of Nusselt Nu is expressed as a function of 
the friction factor ξ (Re). Badus'haq (1993) carried out 

experiments through an electrically heated pipe in turbulent air 

flow to examine the local heat transfer characteristics in the 

steady state case. Belhocine and Wan Omar (2016), and 

Belhocine (2016) conducted a study to investigate the 

distribution of temperature in the pipes for a fully developed 

laminar flow. Recently, Belhocine and Wan Omar (2017) 

solved analytically the problem of convective heat transfer in a 

circular pipe whose solutions were in the form of the 

hypergeometric series. Belhocine and Wan Omar (2018) then 

used a similarity solution and Runge Kutta method in order to 

visualize analytically the thermal boundary layer in the 
vicinity of the inlet of the circular pipe. 

In this paper , a two-dimensional heat transfer in a fully 

developed turbulent flow on circular duct are numerically 

investigated using a FORTRAN code which applied the finite 

difference method to solve the thermal problems on two 

boundary conditions, as it happens, constant wall temperature, 

https://www.sciencedirect.com/science/article/pii/S0017931017324444#!
https://www.sciencedirect.com/science/article/pii/S0017931017324444#!
https://www.sciencedirect.com/science/article/pii/S0017931017324444#!
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https://www.sciencedirect.com/science/article/pii/S0017931005800808#!
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and constant surface heat flux, and steady, axisymmetric flow. 

Finally, the numerical results of the model were validated by 
comparing them with some results available in the specialized 

literature. The comparisons give a good agreement with data 

from the literature.. 

II. THE FLOW GOVERNING EQUATIONS 

 

The governing equations related to the flow are the continuity, 

momentum and energy equations: 

 

 

 

 

 

 

 

where  is the thermal conductivity and E is the total energy, 

which can be  expressed by  

 

 

From the momentum equation a transport equation for the 

Reynolds stress tensor can be derived (Bryant et al., 2018) as;  

 
 

Where , , ,  ,  and   are respectively 

the terms for convection , turbulent diffusion, molecular 

diffusion , shear stress production, stress-strain, and viscosity 

dissipation. These could be written as follows. 

 

 

 

 

 

 

 

For computational stability, the equations for ,  

and  are modified as follows; 

 
 

where σk = 0.82 and μt is the turbulent viscosity, 

 
 

with ,  and  are respectively the surface 

reflection term, slow term, and the rapid term, where the last 
two  are defined as  

 
 

where C1=1.8 and C2=0.6. 

The viscosity dissipation is related to the large-scale vortex 

which is essentially engaged in the transport momentum. 

Nevertheless, it was considered that the dissipation only 

occurs in small-scale isotropic vortex. So the equation for
 
 εi,j  

is reduced to 

 

 
 

III. SIMPLIFYING ASSUMPTIONS USED IN THE 

TURBULENT FLOW ANALYSIS  

 

The equations of continuity and Navier-Stokes as well as the 

governing equations describing the thermal convection 

simultaneously constitute a system of partial differential 

equations very complex to solve. The solutions to these 

complex equations are only possible for relatively simple 

cases. Numerical solutions would require large computer 

resources which are prohibitively complex and expensive. 
Thus to use these equations, some practical assumptions had 

to be made. For the case of flow inside a duct, it can be 

assumed that the flow is fully developed. 

Basically, this means that it can be assumed that certain 

properties of the flow do not change with distance along the 

duct, which applies to real duct flows well away from the 

entrance or fittings.  The fluid properties are also assumed to 

constant, and the form and profile of the velocity and 

temperature does not change with distance along the duct as in 

Fig. 1. Then the velocity and temperature profiles can be 

expressed in the form where the functions f and g are 
independent of the distance along the duct. 
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These simplifications mean that the velocity and temperature 
of the fluid at any radial distance y from the center line of the 

duct will remain constant along the duct.  The wall 

temperature
  

 also remains constant. Since 

u is not changing, this implies that along the tangential and 
radial directions, the velocity components will be quite 

negligible. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

III. NUMERICAL PROCEDURE OF THE THERMAL 

PROBLEM 

 

A. Thermally developing pipe flow  

 

We are interested here in a thermal problem with an initially 

unheated section flow inside a long pipe. The flow is fully 

developed before the beginning of the heating phase, in which 

the unheated section is considered sufficiently long. The 

temperature field only develops when heating begins, but the 

properties of the fluid are initially assumed to be constant 

(Wilcox, 1998). Thus, the velocity field will not vary in this 

region. Figure 1 clearly shows the scheme of the flow 
considered in this analysis. 

In our simulation, we will limit the thermal problem to the 

case of constant fluid properties, such that the corresponding 

equation for turbulent flow in the tube is given as (Kays and 

Crawford, 1993): 

 

 
 

The radial velocity component ( ) is zero as explained before.  

The energy equation describing the thermal problem is then 

given by the following form: 

. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Boundary and initial conditions 

 

 

 

 

The used form of the governing equations is quite parabolic 

while neglecting the longitudinal heat flux and considering 

only the radial flux. The mean velocity,  , is independent of z 

and varies according to r. We can write the equation (18) like 

this 
 

 
The initial and boundary conditions on the solution to this 

equation are: 

When z = 0 ,     

When r = D/2 ,  

When r = 0 ,      

C. Derivation of dimensionless formulas 

 

 

Fig. 1. Thermally developing pipe flow 
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For simplification purposes, it is important to convert this 

equation to a dimensionless form in order to solve the 
problem. For this reason, we will use the following variables: 

 
Where ReD is the Raynolds as a of the average velocity  

through a tube of diameter D, is defined by 

 

 
The wall temperature is considered uniform and equal to . 

The dimensionless temperature is defined as follows 

 

 
where  is the initial fluid temperature before the heating is 

triggered. The substitution of dimensionless variables into 

equation (19), gives 

 

 
For our problem, we will obtain the following boundary and 

initial conditions 

 
 

D. The Thomas algorithm 

 

The tridiagonal matrix Thomas Algorithm is used for the 

resolution of a tridiagonal matrix using a method that was first 

developed by Llevellyn Thomas that bears his name, to solve 

tridiagonal system equations implicitly. The method solves a 

tridiagonal matrix system of the form MU = D, where is a 

matrix of dimensions N×N. That is to say a matrix whose 
elements are null except on the three main diagonals like 

 

 
.The vectors  and , of dimension N, are written: 

      and     

In this algorithm, we first calculate the following coefficients: 

 

 

 
and 

 

 

 
The unknowns  , , ….,  are then obtained by the 

formulas: 

 
 

 
 

In CFD solution techniques, the algorithm is directly coded in 

the resolution process, in contrast to machine-optimized 

subroutines that are used on a specific computer. A simple 

example of a FORTRAN program to adapt this algorithm is 

well illustrated in Figure 2. 

 
Fig. 2. Subroutine for Thomas Algorithm written in FORTRAN 95. 
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E. The numerical method  

 

Notice that the variations of the quantities U and E with R are 

known, as long as the fluid velocity is fully developed. The 

equation obtained will now be processed numerically by the 

finite difference method since it is better adapted to a medium 

with a wall temperature that varies according to the 

longitudinal coordinate Z. This method is simple in its concept 
but effective in its results, as such it is often used in heat 

transfer problems. 

Figure 3 represents the nodal points used in the numerical 

simulation. Here the finite difference method of 

approximations is introduced and an explicit backward order 

of order 1 in the direction (i) is used where the variable U does 

not change, to evaluate values at the spatial coordinate (Z). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

By replacing the derivatives by its finite difference 

approximations obtained from equation (23), we obtain an 

equation in the following form: 

 

  

 

The coefficients Aj, Bj, Cj and Dj resulting from the 

calculations are obtained from the mining form 
 

 

 

 

 

 

 

 
Insertion of boundary conditions of the problem leads us to 

 and  . By exploiting boundary 

conditions while applying all "internal" points (j = 2.3, ... .., N-

2, N-1) in equation Eq. (35). We get a system of N equations 

for N unknowns   summarized from the following form 

 

 

 

 

 

 

 
Or in matrix form 

 

 
where Q is a tridiagonal matrix. This can be effectively solved 

by Thomas's algorithm for tridiagonal matrix. 
For any value of Z, we can estimate the local heat transfer rate 

as follows: 
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Fig. 3. Nodal points used in obtaining finite-difference 
solution  
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from where 

 

 
which implies 

 
where  is the local Nusselt number, then  

 
However  

 
Then replacing equation (47) into equation (45) gives 

 

 
This Nusselt number is based on the spacing between wall 

temperatures and local average temperatures, the flow via the 

pipe is practically considered, so we draw 

 

 
where Nu is the averaged local Nusselt number. This can be 

expressed as; . 

Substituting the previous equation (46) into equation (49), 

allows us to write 

 
 

with  

 

 
We can then define the bulk temperature through the tube 

which is the temperature of the fluid that can be calculated by 

 

 
In this expression, the denominator indicates the 

multiplication of the specific heat integrated in the flow zone 

and the mass flow while the numerator indicates the total 

energy flowing through the tube. This results in the following 

expression 

 

 
which can be written as 

 

 
By using the pre-determined numeric value of  with R for 

any value of Z, the values can be drawn. So, we can 

determine the value of  at this value of Z, 

The solution to this problem can then be obtained such that, 

we must specify the variations of U and E= ( ) in which 

the distribution of E is given by the following equations 

 

 

 

 
with 

 
in which f is the friction factor  

 

 
This is valid for hydraulically smooth pipe with turbulent 

flow, up to the Reynolds number 105 (Re < 105), 

 

 
The distribution of the average speed is presumed to be 

appreciable as follows.  Where   means the center line 

speed. Now the value of   becomes  

 

 
which tends towards 

 

 
By comparing the two equations, we can draw the following 

result 

 
This equation finally gives us the variation of the average 

dimensionless velocity U as a function of the radius of tube R. 

FORTRAN 95 program was used to solve the thermal values 

in a fully developed turbulent flow inside a cylindrical tube 
with uniform wall temperature, using the finite difference 

method. 

 

(44) 

(48) 

(49) 

(50) 

(51) 

(53) 

(55) 

(58) 

(59) 

(60) 

(61) 

(52) 

(46) 

(47) 

(45) 

(54) 

(56) 

(57) 



                      International Journal of Engineering Applied Sciences and Technology, 2018    
                                               Vol. 3, Issue 4, ISSN No. 2455-2143, Pages 1-13 

                           Published Online August 2018 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
 

7 

 

IV. RESULTS AND DISCUSSION 

 

A. Uniform wall temperature 

 
Figure 4 illustrates the variation in dimensionless temperature 

derivatives in the thermal entrance region for Pr=0.7 for 

various values of ReD, with a uniform wall temperature with 

respect to radius, for different Reynolds number, ReD in the 

thermal development region. Notice that in the fully developed 

zone, the behavior of the values is related to the Reynolds 

number whose correlation becomes very noticeable as the 

analysis advances into the thermal input region. This 

significant change is due to the high friction near the entrance 

to the pipe. 
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Fig. 4.  Variation of dimensionless temperature derivative ( )  

in thermal entrance region for Pr=0.7 for various values of ReD  
 

The average Nusselt number NuD along the pipe is shown in 

Figure 5 for different Reynolds number ReD at Prandlt number 

Pr=0.7. The Nu number helps to determine whether the flow is 

hydrodynamically fully developed, or otherwise. The decrease 

in Nu for Re=100000 to 50000 is very significant such that it 

is suggest different flow regimes occurred at these two 
Reynolds number values. There is also a high gradient of Nu 

changes for axial positions near the entrance to the tube. This 

high gradients are caused by high friction in the flow near the 

entrance to the pipe. 
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Using the results obtained from the calculation codes, the 

values of the Nusselt number for various values of the Prandtl 
number was plotted against the pipe axial position as shown in 

Figure 6. With approximate distances from the tube entrance, 

it has been found that the Prandtl number has a much greater 

effect on the Nusselt number values.  In fact, although it is 

hard to see in the presented scale, different Prandtl values also 

yielded different Nu values for the isothermal wall condition. 
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The maximum Nusselt number versus Reynolds number was 

plotted in Figure 7 for the constant wall temperature case. The 
results were calculated and plotted for Peclet numbers 0.7, 1, 

6, 9, 10, and 13 to see how the Peclet number affects the 

Nusselt number distribution in the flow. The more the Peclet 

number increases, the more the Nusselt number increases with 

the increase of the Reynolds number which characterizes the 

flow. At Pe= 0, 7, the difference is perfectly very small, and at 

higher Peclet numbers, the difference is still large and 

significant. 
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The dimensionless temperature was plotted at dimensionless 

radial positions for the constant wall temperature case. The 

results were calculated and plotted for Reynolds numbers 50, 

800, 3000, and 6000 and are presented in Figure 8. Figure 8 

shows that when the Reynolds number is low, the temperature 

of the fluid varied markedly from the centre of the tube (equal 

to the inlet temperature) to the wall. This variation reduces as 
the Re is increased, to equal the wall temperature when as Re 

reaches 3000. Re being the ratio of inertial to frictional forces 

related to the viscosity of the fluid, would increase gradually 

as the temperature of the heating fluid increases gradually 

from the inlet values to the wall temperature. 
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The dimensionless axial velocity profile, as a function of 

radial position for turbulent flow at Prandtl number Pr= 0.7 is 

depicted in Figure 9. Fully developed laminar flow would 
produce the parabolic profile, while a turbulent flow would 

produce a much steeper slope near the wall. The axial velocity 

is maximum at the centerline and gradually decreases at the 

wall to satisfy the no-slip boundary condition for viscous flow. 

The figure shows that the effect of rotation in the turbulent 

pipe flow at the exit. The pipe rotation influences the mean 

stream wise velocity component such that the maximum 

velocity in the center of the pipe increases while the velocity 

close to the wall decreases. This effect results in a slight 

decrease of the shear stresses at the wall and an overall 

decrease of the pressure-drop.  
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The dimensionless eddy viscosity distribution (E) along the 
dimensionless radius of the pipe at different values of the 

Reynolds numbers (Re) is shown in Figure 10.  It can be seen 

that the dimensionless eddy viscosity profiles also have a more 

uniform and almost parabolic symmetric distribution whose 

concavity of this parabola is variable according to the 

Reynolds number. We see a significant change in maximum 

eddy viscosity towards the central part of the pipe at Reynolds 

number values above 6000, where the turbulent regime begins 

in the pipe (Re˃4000). Indeed, turbulent flow consists of 

eddies of various size ranges, which increase with increasing 

Reynolds number. The kinetic energy of the flow would 

cascade down from large to small eddies of interactional 
forces between the eddies. 
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Fig. 10.  Dimensionless eddy viscosity distribution (E) along the 

dimensionless radius (R) at Pr=0.7 for various Reynolds numbers of 
the flow. 

 

B.  Wall heat flux uniform 

 

 

Fig. 11 shows the Nusselt number variations at the thermal 

entrance region for Pr=0.7 plotted for different values of ReD 

in the case of uniform wall heat flux, in order to represent the 

augmentation in the heat transfer. It can be seen that as Re 

increases above 10,000 the average Nusselt number for the 

circular tube starts to increase significantly. Axially the Nu 

values decreased rapidly from the entrance to a point of about 

Z=5 × 10-5, after which the reduction is of lower and constant 

values as shown with the straight line graphs. The straight 

lines also show that the turbulent flow is fully developed. The 

development of the turbulent flow is significantly affected by 
the large Reynolds number values. 
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Fig.11. Variation of Nusselt number NuD in thermal entrance region 
for Pr=0.7 for various values of ReD  

 

Nusselt number NuD variations with axial variations at 

Reynolds number 6000 and Prandtl number 0.7 as obtained 

from the program codes for fully developed turbulent flow in 

the tube with constant wall heat flux are shown in Table 1. 

 
Table 1. Summarized results of the FORTRAN 95 code 

for uniform wall heat flux for Re =6000 and Pr=0.7 

 

Z T Wall NuDi NuDa 

0,0000042 0,0030 334,9473 336,8423 

0,0000086 0,0044 227,3414 229,1351 

0,0000132 0,0055 182,6194 184,4026 

0,0000181 0,0064 156,3688 158,1592 

0,0000232 0,0072 138,4781 140,2811 

0,0000286 0,0080 125,2165 127,0338 

0,0000342 0,0087 114,8419 116,6743 

0,0000401 0,0094 106,4161 108,2639 

0,0000463 0,0101 99,3814 101,245 

0,0000528 0,0107 93,3841 95,2636 

0,0000597 0,0113 88,1857 90,0813 

0,0000669 0,012 83,6188 85,5309 

0,0000744 0,0126 79,5622 81,4912 

0,0000823 0,0132 75,9255 77,8718 

0,0000906 0,0138 72,6394 74,6036 

0,0000994 0,0144 69,6501 71,6326 

https://www.linguee.fr/anglais-francais/traduction/summarized+results.html
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0,0001085 0,0149 66,915 68,9166 

0,0001182 0,0155 64,3988 66,42 

0,0001283 0,0161 62,0737 64,1152 

0,0001389 0,0167 59,9168 61,9793 

0,0001500 0,0173 57,9081 59,9923 

 

J R U T E 

1 -0,0000003 1,224 0,788 -1 

2 0,024 1,216 0,788 2,471 

3 0,04686 1,207 0,7884 5,496 

4 0,06863 1,199 0,7889 8,121 

5 0,08936 1,191 0,7893 10,39 

6 0,1091 1,182 0,7898 12,33 

7 0,1279 1,174 0,7903 13,98 

8 0,1458 1,166 0,7907 15,37 

9 0,1629 1,157 0,7912 16,52 

10 0,1791 1,149 0,7917 17,47 

11 0,1946 1,141 0,7921 18,24 

12 0,2093 1,133 0,7926 18,83 

13 0,2234 1,125 0,793 19,28 

14 0,2367 1,117 0,7935 19,6 

15 0,2495 1,109 0,7939 19,81 

16 0,2616 1,102 0,7943 19,91 

17 0,2731 1,094 0,7948 19,93 

18 0,2841 1,086 0,7952 19,86 

19 0,2946 1,078 0,7956 19,73 

20 0,3046 1,071 0,796 19,53 

21 0,3141 1,063 0,7964 19,29 

 

The dimensionless temperature profiles along the 

dimensionless radius are plotted in Figure 12 for a single value 

of the Prandtl number (0.7) and various Reynolds numbers. 

Note that the effects of increasing the Reynolds number is to 

give a more "square" temperature profile, while a low 

Reynolds number yields a more rounded profile that is similar 

to that for laminar flow. Still higher and lower values of 

Reynolds number continue these trends. Note that as the 

Reynolds becomes higher than 3,000 the dimensionless 

temperature approaches a constant value along the radius 
approaching the threshold of 0.80. 
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Fig.12. Temperature behavior (θ) versus dimensionless radius (R) for 
various values of  Reynolds number  

 

 

The dimensionless eddy viscosity distribution E as a function 

of dimensionless axial position plotted for one particular value 

of the Prandtl number in Figure 13 at different Re numbers. 
As can be seen in this Figure, the surface temperature 

increases from a certain value at the pipe center with the 

increasing of the Reynolds number Re. Note that the eddy 

diffusivity is maximum at the tube centerline. Indeed, the 

relative viscosity increases from the pipe wall towards the pipe 

centre because the fluid tends to behave like a solid rather than 

a liquid when approaching the core region of the pipe, due to 

the lower shear rate in this region. That is why the 

dimensionless Eddy viscosity, is related to the dimensionless 

shear rate and the Reynolds number. 
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Fig.13. Dimensionless eddy viscosity distributions (E) versus 
dimensionless radius (R) for various Reynolds number 

 

C.Comparison of constant wall temperature and heat flux 

cases 

 

For the calculations of the heat transfer in a fully developed 

turbulent flow inside a circular pipe, we will compare the 

current numerical Nusselt numbers results for the case of 

constant wall temperature and the case of constant heat flux at 

constant Reynolds number of 104 (shown in Figure 14) and for 

constant Prandtl number of 0.7 (shown in Figure 15). It can be 
seen that the Nusselt number in the case of uniform wall 

temperature lie above the numbers for wall in uniform heat 

flux. This Nu values decreased sharply exponentially at the 

entrance but the decrease reduced to lower rate further down 

the pipe. But the final values for the two cases differ quite 

markedly in the flow far from the entrance. Similar curves 

were produced for constant Prandtl number (0.7) as shown 

Figure 15. 
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Fig .14. The Comparison of Nusselt number profile for uniform wall 
temperature with the uniform wall heat flux for Re =10000. 
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Fig.15. The Comparison of Nusselt number profile for uniform wall 
temperature with the uniform wall heat flux for Pr =0.7. 

 

Figure 16 show the effects of boundary conditions 

(constant wall temperature. (CWT) and constant wall heat flux 

(CWHF)) on the dimensionless temperature in the pipe for 

Re=104. Constant heat flux and constant temperature surfaces 

do not give the same results (in terms of θ) when the flow 

becomes strongly unsteady and turbulent. Constant heat flux 

surfaces produce colder zones at high Re thus yielding a 

reduced Nu. Note that, only at very low Prandtl numbers, there 

would be a significant difference of temperatures between the 

constant-heat-rate and constant-surface temperature cases.  

https://www.researchgate.net/publication/232849301_Comparison_of_constant_wall_temperature_and_heat_flux_cases_for_the_turbulent_rough-wall_boundary_layer
https://www.researchgate.net/publication/232849301_Comparison_of_constant_wall_temperature_and_heat_flux_cases_for_the_turbulent_rough-wall_boundary_layer
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Fig. 16.  Comparison of dimensionless temperature behavior in the 
two case for Re =104 

 

D. Comparison of the present numerical model and the 

previous correlation data 

 

In order to verify and validate the numerical results of this 
simulation of the thermal problem, the results are compared to 

the work recently performed by Taler (2016) using the finite 

difference method. Taler evaluated Nusselt numbers or 

various Reynolds and Prandtl numbers. In addition, the 

Nusselt numbers were obtained for fully developed turbulent 

flow in tubes with constant wall heat flux after solving the 

energy conservation equation. 

The comparison of the results of the Nusselt numbers (Nu) as 

a function of Reynolds number (Re) for the case of the Prandtl 

number (Pr = 0.7) for air flowing inside a circular heating pipe 

is illustrated in Fig.17. It can be observed that the numerical 
solutions match the work of Taler (2016) very well, with an 

average deviation of less than 2% for Pr=0.7. This is a very 

good agreement. Thus the treated thermal model has been well 

verified and validated and the comparison results confirm the 

reliability of this numerical program. 
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 Fig. 17.  Comparison of the numerical data obtained in the present 
work and the data from Taler (2016) for turbulent air flow in a tube 

with constant wall heat flux. 

 

VI. CONCLUSIONS 

 

The impact of our contribution on the prediction of the heat 

transfer rate at the wall of a pipe towards a fluid in turbulent 

flow is presented. Main attention was given to two dimensional 
and  axi-symmetric flow through circular pipes. The methodology of 

the analysis is based on the thermal equations of turbulent flow models and 

finite-difference methods. The equations were adapted for any 

thermal boundary conditions, so long as the velocity profile 

was assumed to be fully developed at the point where heat 

transfer starts. A program using FORTRAN 95 simulating the 

fully developed turbulent fluid flow through a circular tube 

was developed. Then a simulation for the two thermal 

boundary conditions of uniform wall temperature and constant 

heat flux, were carried out. It was found that the surface 

temperature is higher for high Reynolds numbers than for low 

Reynolds numbers, due to the free convection domination on 
the combined heat transfer process. Mean axial velocity and 

temperature profiles were shown to increase and extend 

farther in the outer layer with increasing Reynolds number. 

This consequently made the local Nu numbers to be higher for 

high Re numbers than for low Re numbers. This is due to the 

forced convection that dominates the heat transfer process. 

The thermal current results in this numerical study, shows that 

the influence and sensitivity of some of the parameters 

involved in the calculations and the results of available 

literature agree very well, with uncertainties of less than 2%. 

In the fully developed turbulent flow, the Nusselt number, as 
well as the dimensionless temperatures increase with 

increasing Reynolds numbers. It is also necessary to compare 

https://www.researchgate.net/publication/232849301_Comparison_of_constant_wall_temperature_and_heat_flux_cases_for_the_turbulent_rough-wall_boundary_layer
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the numerical results, especially for Nusselt numbers, 

temperatures and velocity profile obtained in this simulation 
of the Navier-Stokes equations for fully developed axis-

symmetric flow, with experimental data. 

It should also be mentioned that the same solution procedure 

can be used for any dynamically developed velocity profile 

and turbulent model in other conduit configurations such as 

channel geometries and rectangular, triangular or other 

sections. Different wall heating conditions, and viscous and 

other flows could also be evaluated for different heating 

effects. 
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