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Abstract— Frequent itemset identification from a given 

dataset is an important research area. For finding frequent 

itemsets use of closed/maximal frequent itemsets is 

proposed in the literature as the memory required to store 

closed/maximal frequent itemsets is less. In this paper an 

effort has been made for finding maximal frequent itemsets 

in place of frequent itemsets. The proposed algorithm 

NewGenMax finds maximal frequent itemsets in order to 

save memory space in a reduced time from the list of local 

maximal frequent itemset list. NewGenMax algorithm is 

compared to GenMax algorithm in terms of the number of 

iterations required and the execution time. In order to 

verify the supremacy of the proposed algorithm 

NewGenMax over the existing algorithm GenMax the 

experiments have been performed on both synthetic and 

real datasets. The results obtained are encouraging.  

Keywords—prefix tree, maximal frequent itemsets, 

transactions, support 

I. INTRODUCTION 

Mining is the process of extracting valid, previously unknown, 

comprehensible and actionable information from large 

databases and using it to make crucial business decision. 

Association rule mining is a type of mining used to identify 

certain kinds of association among the items in the database. 

Frequent itemset mining [2, 3, 6, 7, 8] and rule generation [16] 

are the two subtasks of association rule mining. Mining of 

frequent itemsets is a fundamental and essential need in many 

data mining applications such as the discovery of association 

rules, strong rules, correlations, multidimensional patterns, and 

many other important discovery tasks, etc. Many applications 
like inductive databases and query expansion require fast 

implementations of frequent itemset mining. Most of the 

approaches for frequent itemset mining enumerate candidate 

itemsets, determine their support and prune candidates that fail 

to reach the user-specified minimum support. These approaches 

often results in generating a large number of frequent itemsets 

that takes more memory space. Candidate generation-and-test 

methodology or the Apriori technique is the base technique of 

frequent itemset mining algorithms.  

In order to reduce the memory space requirement, maximal 

frequent itemsets are identified. Maximal frequent itemsets are 

those frequent itemsets which do not have any subset in the 
frequent itemset list and they store information about all 

frequent itemsets in a precise manner. Mining of frequent 

patterns is a basic problem in data mining. Most of the frequent 

itemset mining algorithms work by checking the superset for 

each itemset. This takes more memory space and is time 

consuming. The objective of the paper is to propose an 

algorithm that can save memory space by reducing the number 

of iterations identified while generating maximal frequent 

patterns from the list of local maximal frequent itemsets.  

II. BASIC DEFINITIONS AND RELATED EXISTING WORK 

Before discussing the proposed algorithm it is important to get 

familiarized with the basic terminology: 

Association Rule Mining: Association Rule Mining is a popular 
and well researched method for discovering interesting 

relations between variables in large databases. The task of 

mining association rules consists of two steps which involves 

finding the set of all frequent itemsets followed by testing and 

generating all high confidence rules among these itemsets. 

Itemset, I: An itemset is the set of m items {i1, i2… im}, where 

m=0, 1, 2, 3, … 

Closed Itemset: An itemset is said to be closed if there does not 

exist any superset that has the same support. 

Database, D: It denotes a database of transactions where each 

transaction has a unique identifier (tid) and contains a set of 

items (itemsets). 

Tidset, T: The set of all transaction identifiers, tids is denoted 

by T = {t1, t2,  …,  tm}.  

The set t (X)  T, consists of all the transaction identifiers 
which contain X as a subset is called the tidset of X.  
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K-itemset: An itemset with k items is called a k-itemset. 

Example: {A, C, D, T, W} represents a list of 1-itemset or F1 

and {AC, CD, AD} denotes a list of a 2-itemset or F2. 

Support, σ(X): The number of transactions in which an itemset 

X occurs as a subset is termed as support. Thus, σ (X) = |t (X)| 

Minimum Support, min_sup: Minimum support is the 

predefined threshold support value by the user. 

Frequent Itemset, FI: An itemset X is frequent if its support 

value is more than or equal to the min_sup value, i.e. σ(X) >= 

min_sup. Therefore, a frequent itemset is the one that occurs in 

at least a user-specified percentage of the database. Here, Fk 
denotes the set of frequent k-itemsets.  

Local Maximal Frequent Itemset, LMFI: This list of local 

maximal frequent itemsets contains those maximal frequent 

itemsets that can potentially be the superset of candidates that 

are to be generated from the itemset. 

Maximal Frequent Itemset, MFI: A frequent itemset is said 

to be maximal, if it is not a subset of any other frequent itemset, 

|MFI| << |FI|. These are those frequent itemsets which do not 

have a frequent superset in the LMFI list. 

Frequent itemset mining is the most researched field of 

frequent pattern mining. Many algorithms use frequent itemset 
to identify the maximal frequent itemset. The original problem 

was to discover association rules, where the main step was to 

find maximum frequently occurring itemsets. Among all the 

frequent itemset mining algorithms, the majority of them claims 

to be efficient and follow the anti-monotone property, i.e. if a 

pattern is found to be frequent then all of its non-empty subsets 

will be frequent. In other words, if a pattern or itemset is not 

frequent, then none of its supersets can be frequent.  

2.1  Overview of Existing Algorithms 

The candidate generation-and-test methodology, called the 

Apriori [2] technique was the first technique to compute 

frequent patterns based on the anti-monotone property. 

MaxMiner [3] employs a breadth-first traversal of the search 

space and it reduces database scanning by employing a look 

ahead pruning strategy. FP-growth [10] uses an extended FP-

tree [12] structure to store the database in compressed form. 

DepthProject [1] finds large itemsets by using depth first search 

on a lexicographic tree of itemsets. Mafia [5] uses three pruning 

strategies to remove non-maximal sets. Prefix-tree [13] or Trie 
[4] structure, known as an FP-tree is used for storing 

compressed information about frequent itemsets and 

implemented to mine frequent itemsets. DCI-Closed [11] 

proposes a general technique for promptly detecting and 

discarding duplicate closed itemsets, without the need of 

keeping in the main memory the whole set of closed patterns. 

GenMax [9, 15] uses a new format called diffset for fast 

frequency testing and progressive focusing for maximality 

checking.  

Apriori was proposed by Agrawal et al. in the year 1993. 

Many of the proposed itemset mining algorithms are variant of 

Apriori [14] which employs a bottom-up, breadth-first search 

that enumerates every single frequent itemset. In many 

applications especially in dense datasets with long frequent 

patterns enumerating all possible 2m−2 subsets of a m-length 

pattern is computationally unfeasible.  

In the year 1998, Bayardo proposed MaxMiner [3] that 

employs a breadth-first traversal of the search space for finding 

the maximal frequent itemsets. It quickly narrows the search by 

using efficient pruning techniques. It also reduces the database 

scanning by employing a look-ahead pruning strategy, i.e. if a 

node with all its extensions is determined to be frequent then 

there is no need to further process that node. It employs item 

(re)ordering heuristic to increase the effectiveness of superset-
frequency pruning.  

Han et al. proposed tree based algorithm named FP-Growth 

[10] in the year 2000. The FP-tree structure is a compressed 

representation of all the transactions in the database. It uses a 

recursive divide-and-conquer and database projection approach 

to mine long patterns. Since it enumerates all frequent patterns 

it is impractical when pattern length is long. The FP-growth 

uses this FP-Tree as the basic data structure for a compact 

representation of all relevant frequency information of a 

database and thus removes the infrequent items. Every branch 

of the FP-tree represents a frequent itemset, and the nodes 
along the branches are stored in decreasing order of frequency 

of the corresponding items, with leaves representing the least 

frequent items. FP-growth identifies the support of each and 

every item in the transaction and therefore prunes the 

infrequent items.  

In the same year Agarwal et al. proposed DepthProject 

algorithm [1] that finds long itemsets using a depth first search 

of a lexicographic tree of item-sets, and uses a counting method 

based on transaction projections along its branches. This 

projection is equivalent to a horizontal version of the tidsets at a 

given node in the search tree. DepthProject also uses the look-

ahead pruning method with item reordering. It returns a 
superset of the MFI and would require post-pruning to 

eliminate non-maximal patterns. 

In the year 2001, Burdick proposed Mafia algorithm [5] that 

uses three pruning strategies to remove non-maximal sets. The 

first strategy is the look-ahead pruning which was earlier used 

in MaxMiner. The second is to check if a new set is subsumed 

by an existing maximal set. The last strategy checks if t(X) ⊆ 

t(Y) where X and Y are the subsets of the existing maximal set. 
If so, X is considered together with Y for the extension. Mafia 
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uses vertical bit-vector data format and compression of bitmaps 

to improve the overall performance. Mafia mines a superset of 

the FI, and requires a post pruning step to eliminate non-

maximal patterns.  

A fast and memory efficient algorithm DCI-Closed [11] 

was proposed by Lucchese et al. in the year 2004 to mine 

frequent closed itemsets. The paper proposes a general 

technique for promptly detecting and discarding duplicate 

closed itemsets, without the need of keeping in the main 

memory the whole set of closed patterns. To remove duplicity, 
a particular visit of the lattice of frequent sets is used to identify 

unique generators of each equivalence class. This algorithm 

finds generators and computes their closure. As soon as a 

generator is found, its closure is computed and new generators 

are built as supersets of the closed itemset discovered so far. 

For any closed itemset Y, it is possible to find a sequence of 

order preserving generators in order to climb a sequence of 

closure itemsets and arrive at Y. 

Surprising results of trie-based FIM algorithms [4] proposed 

by Ferenc Bodon et al. in the year 2004 were published. Prefix 

Tree (Trie) is a popular data structure in FIM algorithms which 

is an ordered tree data structure that is used to store an array or 
strings over an alphabet and efficiently retrieve words of a 

dictionary. It is memory-efficient and allows fast construction 

and information retrieval. Many trie-related techniques can be 

applied in FIM algorithms to improve efficiency for fast 

management. The itemset that is obtained by removing 

infrequent items from T is known as the filtered transaction of 

T. It is useless to store the same filtered transactions multiple 

times. Instead store them once and employ counters which store 

the multiplicities. This way the memory is saved and run-time 

can be significantly improved. The size of the FP-tree that 

stores filtered transactions is declared to be “substantially 

smaller than the size of database”. A trie thus stores the same 

prefixes only once.   

In 2005, GenMax algorithm [9] was proposed by Zali et al. 

It utilizes a backtracking search for efficiently enumerating all 
maximal patterns. It uses a number of optimizations to quickly 

prune away a large portion of the subset search space. It uses a 

novel progressive focusing technique to eliminate non-maximal 

itemsets, and uses the diffset propagation for fast frequency 

checking. It first describes the backtracking paradigm in the 

context of enumerating all frequent patterns, and then 

subsequently modifies this procedure to enumerate the MFI. 

This method for finding the maximal elements include the work 

of iteratively attempting to extend a working pattern until 

failure by maintaining a candidate set of maximal patterns 

which help in reducing the number of database scans, by 

eliminating non-maximal sets early. The maximal candidate set 

is a superset of the maximal patterns, and in general, the 
overhead of maintaining it can be very high. GenMax integrates 

pruning with mining and returns the exact MFI. This involves a 

list of algorithms and optimizations used during the calculation 

of MFI. The optimizations of GenMax contain two steps: 

Superset checking optimization: The main efficiency of 

GenMax stems from the fact that it eliminates branches that are 

subsumed by an already mined maximal pattern.  

Frequency testing optimization: GenMax uses a vertical 

database format, where we have available for each itemset, its 

tidset- the set of all transaction tids where it occurs. 

GenMax is illustrated with the help of an example, the 

transaction database contains itemsets BDUX, DEX, BDUX, 
BDEX, BDEUX, DEU and the minimum support (min_sup) 

value is taken to be 3. Consider the backtracking algorithm for 

mining all frequent patterns as discussed in GenMax. The main 

loop tries to extend Il (which is initially empty {}) with every 

item x in the current combine set Cl which initially contains 

{B,D,E,U,X}.  

The first step is to compute Il+1, which is simply Il {} 

extended with x{B}. The second step is to extract the new 

possible set of extensions, Pl+1,{D,E,U,X} which consists only 

of items y in Cl that follow x. The third step is to create a new 

combine set for the next pass, consisting of valid extensions. 
An extension is valid if the resulting itemset is frequent. The 

combine set, Cl+1, {D,U,X}thus consists of those items in the 

possible set that produce a frequent itemset when used to 

extend Il+1 Any item not in the combine set {E} refers to a 

pruned subtree. The final step is to recursively call the 

backtrack routine for each extension. So, the prefix tree 

obtained is: 



 

                         International Journal of Engineering Applied Sciences and Technology, 2017    
                                                Vol. 2, Issue 5, ISSN No. 2455-2143, Pages 101-113 
                              Published Online March-April 2017 in IJEAST (http://www.ijeast.com) 

  

104 

 

Figure 2.1: Prefix tree generated at minimum support equal to 3 

 

The Figure 2.7 shows the prefix tree where the circled items 

represent the infrequent itemsets, which were pruned away from 

the tree. It returns the LMFI list as BDUX, BDX, BUX, BX, 

DEX, DUX, DX, EX, UX, X which is shown with the crossed 

lines, as the largest frequent itemset in every branch of the tree. 

The iterations identified while generating the MFI list from 

the LMFI list using GenMax Algorithm are: 

LMFI={BDUX, BDX, BUX, BX, DEX, DUX, DX, EX, UX, X} 

LMFI={BDUX, BDX, BUX, BX, DEX, DUX, DX, EX, UX, X} 

LMFI={ BDUX, BUX, BX,DEX, DUX, DX, EX, UX, X} 

LMFI={ BDUX, BX, DEX, DUX, DX, EX, UX, X} 

LMFI={ BDUX,DEX, DUX, DX, EX, UX, X} 

LMFI={ BDUX,DEX, DX, EX, UX, X} 

LMFI={ BDUX, DEX, EX,UX, X} 

LMFI={ BDUX, DEX, UX, X} 

LMFI={ BDUX, DEX, X} 

LMFI={ BDUX, DEX } 

Hence, MFI = { BDUX, DEX} can be obtained in 10 steps 

for the given example. 

III.    PROPOSED ALGORITHM 

This section discusses the proposed algorithm, NewGenMax 

that improves the efficiency for mining MFI. The proposed 

algorithm tries to overcome the shortcomings of the GenMax 

algorithm by introducing the concept of subset checking. With 

the increase in the size of LMFI (Local Maximal Frequent 

Itemsets) list in GenMax, the time for checking superset 

increases and at the same time the size of prefix tree grows 
larger. Thus making excess memory utilization and also takes 

more steps which is not satisfactory.  

3.1 NewGenMax Algorithm 

NewGenMax assumes the input dataset to be in the vertical 

tidset format. For reducing the number of intermediate steps or 

iterations, following steps must be followed: 

(i) Sort the LMFI in decreasing order of length of 

itemsets. 

(ii)  For each itemset Ii in LMFI. 

(iii) Generate all possible subsets of Ii and store it in S. 

(iv) Take the set difference of set LMFI with S and 

store it as LMFI. 

(v) Return MFI=LMFI 

The working of the proposed algorithm is discussed in Figure 

3.1 where the input parameter Transaction denotes the dataset of 

transactions and min_sup defines the user predefined threshold 

support value.  
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void NewGenMax (Transaction, min_sup){  

for (each transaction){  

  string st=read_file()      //File read 

  sym_list = check_symbol(st)    

//let sym_list stores the list of symbols obtained from function 

check_symbol 

}  // for loop closed 

LMFI= tree () //returns LMFI list by using symbol list 

LMFI = createMFI() 

//update LMFI list and return LMFI = MFI 

} //main loop closed 

Figure 3.1: Algorithm for NewGenMax 

In NewGenMax three pointer structures are maintained, 

*transaction point towards the transaction list, *fi points to the 

frequent item list obtained and *symbol points to the symbol list 

obtained from the transaction database. Each structure uses cur, 

front and prev to point the current, front and previous position 

value of the list.  

Initially, the input transaction database file is read where 

each line of database represents a distinct transaction. 

Transaction is taken in the form of a string and then the function 

checksymbol() is called for each transaction string. Figure 3.2 
describes function checksymbol() that check for the symbols 

occuring in all transactions using function insert_symbol() for 

the length of itemlist and results in a sorted symbol list denoted 

by sym_list.  

check_symbol (char * S){  

for (length of itemlist in each transaction){ 

 insert_symbol (S)  

} //for loop closed 

} //main loop closed 

Figure 3.2: Function check_symbol() 

The function insert_symbol () shown in Figure 3.3 sorts the 
symbol list which is returned as an output of function 

check_symbol().  

 insert_symbol (char *s){    

for (i= 0 to length of sym_list){    

   if  s is there in sym_list then break  

   else insert s at position i in the sym_list 

}   //for loop closed 

}   //main loop closed 

Figure 3.3: Function insert_symbol() 

The function tree() shown in Figure 3.4 check all the 

branches of a tree for all the symbols obtained through 

check_symbol(). 

tree(){  

for(i=sym_list){    

   for(j= sym_list){   

     Check(for each sym_list value from position i ,j ) 

                                          //returns LMFI list 

} // inner for loop closed 

} //outer for loop closed 

} //function closed 

Figure 3.4: Function tree() 

Function Check () takes the input symbol list as shown in 

Figure 3.4 and prunes the infrequent subtrees from every branch 

of  the prefix tree depending upon the min_sup value as defined 

in Figure 3.5 and returns the list of local maximal frequent 

itemsets list. 

int Check(char *string,int val){ 

 strcpy(symbol_string,each value of sym_list)); 

{ 

if((strcmp(string,symbol_string)==0)and(Count(string,val)==1)) 

then send(string)  //adds string to the LMFI list 

 else if(Count(string,val)==1){  

   for(c=val+1 to length of symbol)  

                                     //traverses for all the subtrees  

   strcpy(st,ADD(string,val)) 

   if(Check(st,c)==1){  

       adds the char to sym_list  

    } //while closed 

  } //for closed 

 } //if closed 

} //main loop closed 

Figure 3.5: Function Check() 

Function Count() used in Figure 3.5 returns 1 if  the string 

passed is frequent else it return 0. The function createMFI() 

discussed in Figure 3.6 generates the MFI list from the LMFI 

list. 

createMFI(){  
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t=0; start: for(each i=length of frequent item){  

for(each j=1+length of frequent item) 

 if(t==i) increment t              

if(the itemset at position i contains the itemset at position j) 

then delete itemset at position j and goto start 

   }} 

Figure 3.6: Function createMFI() 

3.2 An example to illustrate working of NewGenMax 

Algorithm 

To illustrate the proposed algorithm, consider an example 

database given in Table 3.1. Each transaction is traversed with 

the help of function check_symbol() shown in Figure 3.2 that 

results in a list containing all the distinct symbols occurred in the 

transaction database in a sorted manner. 

Table 3.1: Transactional Database 

TID Itemsets 

1 BDUX 

2 DEX 

3 BDUX 

4 BDEX 

TID Itemsets 

5 BDEXU 

6 DEU 

 

Five different symbols obtained from the given database are 

{B, D, E, U, X}. The frequent and maximal frequent itemsets 

with their respective itemsize are shown in Table 3.2 at min_sup 

value equal to 3. 

Table 3.2: Frequent and Maximal Itemset Database 

Itemset 

Size 

Frequent Itemsets min_Sup 

= 3 

Maximal Itemsets 

min_Sup = 3 

1 B, D, E, U, X  

2 BD, BU, BX, DE, DU, DX, 

EX, UX 

 

3 BDU, BDX, BUX, DUX, 

DEX 

DEX 

4 BDUX BDUX 

 

Using the database given in Table 3.1, prefix tree generated 

at min_sup equal to 3 is given in Figure 3.7 and at minimum 
support equal to 3 is shown in Figure 3.7.  

 

 

Figure 3.7: Prefix tree generated at mininmum support equal to 3 
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In Figure 3.8, circles indicate the maximal frequent 

itemsets and the crossed lines shows the infrequent itemsets. 

Due to the downward closure property (all subsets of a 

frequent itemset must be frequent) the frequent itemsets form 

a border (shown by the bold line in Figure 3.8), such that all 

frequent itemsets lie above the border, while all infrequent 

itemsets lie below it.  

The list of local maximal frequent itemsets generated from 

the prefix tree contains: 

LMFI= {BDUX, BDX, BUX, DEX, DUX, BX, DX, EX, UX, 
X} 

The proposed algorithm NewGenMax generates less 

number of iterations in order to generate MFI from LMFI.  

LMFI list is read from left to right. After reading each itemset, 

the subsets of the itemset need to be stored in a new list S. Set 

difference of list S with the LMFI list results in an updated 

LMFI list. The process is repeated till the last itemset of LMFI 

is scanned. From the LMFI list given above, the first itemset 

identified is BDUX. The subsets list S generated from BDUX 

is { {}, B, D, U, X, BD, BU, BX, DU, DX, UX, BDU, BDX, 

BUX, DUX, BDUX}. Taking the set difference of LMFI list 

with list S, updates the LMFI list to {BDUX, DEX, EX}. 

In the similar fashion, the subsets of all the itemsets in the 

LMFI list are removed from the LMFI list. This process 

continues until the whole LMFI list is scrolled, resulting in 

final LMFI list having itemsets {BDUX, DEX}.  

Steps generated while converting LMFI list into MFI list 

using NewGenMax Algorithm are: 

LMFI={BDUX, BDX, BUX, DEX, DUX, BX, DX, EX, UX, 

X} 

LMFI={BDUX, DEX, EX} 

LMFI={BDUX, DEX} 

This updated LMFI list is then returned as MFI which can 
be obtained in only 3 iterations. Hence, MFI = {BDUX, 

DEX}. 

IV.     PERFORMANCE EVALUATION 

In this section, a systematic and realistic set of experiments 

were performed to show the performance evaluation of 

proposed algorithm over the existing algorithm. Experiments 

were performed on an Intel I3 processor with 2GB of memory, 

running Ubuntu. Section 4.1 shows the datasets that were used 

in the performance evaluation and Section 4.2 refers to the 

experiments conducted. 

4.1 Datasets Used 

Performance of the proposed algorithm has been done with 

the existing algorithm on both synthetic and real datasets. 

Typically, the real datasets are very dense, i.e. they produce 

many long frequent itemsets even for high values of support.  

The synthetic datasets were generated using IBM Synthetic 

Data Generator. Table 4.1 shows the synthetic datasets 

generated along with their nomenclature where T denotes the 

approximate number of transactions in the datasets generated, 

L denotes average number of items per transaction and N 

denotes total number of items in the dataset.   

Table 4.1: Datasets taken from IBM Synthetic Data Generator 

 

Dataset Total number 

of Transactions 

(T) 

Average length 

of Transactions 

(L) 

Total number of 

distinct Items 

(N) 

T100L10N10 100 10 10 

T100L20N10 100 20 10 

T100L30N10 100 30 10 

T200L10N10 200 10 10 

T200L20N10 200 20 10 

T200L30N10 200 30 10 

T300L10N10 300 10 10 

T300L20N10 300 20 10 

T300L30N10 300 30 10 

T400L10N10 400 10 10 

T400L20N10 400 20 10 

T400L30N10 400 30 10 

T500L10N10 500 10 10 

T500L20N10 500 20 10 

T500L30N10 500 30 10 

 

4.2  Results 

The performance of the two algorithms, significantly vary 

with the two parameters: execution time and the number of 

steps identified while generating MFI from LMFI which 

further depends upon the dataset characteristics. On the basis 

of average length of itemset per transactions, synthetic 

datasets were divided into three categories viz. Category A, 

Category B and Category C. The average number of items per 
transactions in datasets belonging to Category A, Category B 

and Category C are 10k, 20k and 30k respectively.  
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4.2.1 Synthetic Datasets 

Table-4.2, Table-4.3 and Table-4.4 shows the comparison 

for the proposed algorithm and existing algorithm on datasets 

belonging to Category A, Category B and Category C 

respectively. The execution time comprises input file reading 

time, time used for the filtering, sorting and recording of 
items, time used for sorting of transactions, intersecting time 

and output file writing time.  

Figure 4.1(a) and Figure 4.1(b) corresponding to Table 4.2, 

presents the comparison for execution time and the number of 

steps identified while converting LMFI into MFI respectively. 

In the similar way, Figure 4.2(a) and Figure 4.2(b) were drawn 

for Table 4.3 and Figure 4.3(a) and Figure 4.3(b) were drawn 

corresponding to Table 4.4 

Table 4.2: Comparison of execution time and number of 

iterations required in generating MFI from LMFI for both 

NewGenMax and GenMax on datasets belonging to Category A 

 

Category A   

Datasets 

GenMax NewGenMax 

 Execution 

Time 

No. of 

iterations in 

generating 

MFI from 

LMFI 

 Execution 

Time 

No. of 

iterations in 

generating 

MFI from 

LMFI 

T100L10N10 0.115194 164 0.121289 33 

T200L10N10 0.778955 167 0.461328 34 

T300L10N10 0.729365 164 0.700329 41 

T400L10N10 1.2489 166 0.95662 50 

T500L10N10 1.15662 164 1.13839 49 

Table 4.3: Comparison of execution time and number of 

iterations required in generating MFI from LMFI for both 

NewGenMax and GenMax on datasets belonging to Category B 

 

Category B  

Datasets 

GenMax NewGenMax 

 Execution 

Time 

No. of 

iterations in 

generating 

MFI from 

LMFI 

 Execution 

Time 

No. of 

iterations in 

generating 

MFI from 

LMFI 

T100L20N10 1.13659 1134 0.832613 226 

T200L20N10 1.67913 1136 1.66313 227 

T300L20N10 2.8432 1124 2.56942 281 

T400L20N10 3.76112 1128 3.39873 338 

T500L20N10 4.22238 1129 4.2037 339 

 

Table 4.4: Comparison of execution time and number of 

iterations required in generating MFI from LMFI for both 

NewGenMax and GenMax on datasets belonging to Category C 

 

Category C 

Datasets 

GenMax NewGenMax 

 

Executio

n Time 

No. of iterations 

in generating 

MFI from 

LMFI 

 Execution 

Time 

No. of iterations 

in generating 

MFI from 

LMFI 

T100L30N10 1.6092 2358 1.63354 471 

T200L30N10 3.7386 2276 3.26916 455 

T300L30N10 4.91607 2270 4.84378 567 

T400L30N10 6.50973 2278 6.54509 683 

T500L30N10 8.20685 2282 8.05916 685 
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(a)                                                                                     (b) 

Figure 4.1 (a) Execution Time taken by NewGenMax and GenMax on Category A datasets, (b) Number of iterations required in 

generating MFI from LMFI by NewGenMax and GenMax on Category A datasets 

 

     

 

 

           (a)               (b)  

Figure 4.2 (a) Execution Time taken by NewGenMax and GenMax on Category B datasets, (b) Number of iterations required in 

generating MFI from LMFI by NewGenMax and GenMax on Category B datasets 
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(a)         (b)  

Figure 4.3 (a) Execution Time taken by NewGenMax and GenMax on Category C datasets, (b) Number of iterations required in 

generating MFI from LMFI by NewGenMax and GenMax on Category C datasets 

 
From these figures, it can be inferred that proposed 

algorithm NewGenMax gives better results for all the three 

types of synthetic datasets discussed in Table 4.2, Table 4.3 

and Table 4.4. From figures, it can also be concluded that 
NewGenMax converts LMFI into MFI in less number of 

iterations leading to reduced execution time.  

 
4.2.2 Real Datasets 

This section gives the performance evaluation of 

NewGenMax with GenMax on real datasets. Chess and 

mushroom datasets are taken fom the UCI (University of 

California, Irvine) Machine Learning Repository, click and 

retail datasets are taken from FIMI(Frequent Itemset Mining 

Implementation) Repository where the click dataset contains 

data related to real time browsing pattern whereas dataset 

named retail contains the (anonymized) retail market basket 

data from the anonymous Belgian retail store.   

Figure 4.4(a) and 4.4(b) corresponding to Table 4.5, 

presents the comparison of execution time and the number of 
iterations needed to obtain MFI from LMFI respectively.  

From these figures, it can be inferred that the proposed 

algorithm gives better performance on real datasets than the 

existing algorithm. 

Table 4.5: Comparison of execution time and number of 

iterations required in generating MFI from LMFI for both 

NewGenMax and GenMax on Real Datasets 

 

Real 

Datasets 

GenMax NewGenMax 

 Execution 

Time 

No. of iterations 

in generating 

MFI from 

LMFI 

 Execution 

Time 

No. of iterations 

in generating 

MFI from 

LMFI 

Chess 0.0254998 838 0.0144269 168 

Click 0.023021 260 0.020721 62 

Mushroom 0.016521 758 0.0142591 205 

Retail 0.024615 293 0.0173669 88 
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(a)       (b)    

Figure 4.4 (a) Execution Time taken by NewGenMax and GenMax on real datasets, (b) Number of iterations required in generating 

MFI from LMFI by NewGenMax and GenMax on real datasets 

 

V.    APPLICATION AREAS 

The proposed frequent itemset mining algorithm can be 

applied in the areas of market basket analysis, web log 
analysis, cross Marketing, catalog design, product assortment 

decisions and intrusion detection System. Section-5.1 

discusses Market Basket Analysis in detail. 

5.1 Market Basket Analysis (MBA) and Association Rule 

mining 

MBA is a mathematical modeling technique based upon 

the theory that it identifies customers purchasing habits. It 
provides insight into the combination of products within a 

customer’s 'basket' viz further termed as a transaction. Top 

progressive retailers are using the MBA to win margin and 

market share that will help them increase their success and 

provide them with the edge that they need. As retailing is 

becoming a high performance sport, retailers are seeking a 

competitive edge through technology. MBA, also known as 

affinity analysis, has emerged in the evolution of retail 
merchandising and promotion. It allows leading retailers to 

quickly and easily look at the size, contents, and value of their 

customer’s market basket to understand the patterns in how 

products are purchased together and also offers more 

advanced capabilities to interact with the transaction data to 

discover patterns, affinities and associations. Ultimately, the 

purchasing insights provide the potential to create cross sell 

propositions:  

 Which product combinations are bought like monitor, 

central processing unit(CPU), keyboard and mouse 

 When they are purchased 

Developing this understanding enables businesses to 

promote their most profitable products. It can also encourage 

customers to buy items that might have otherwise been 

overlooked or missed. MBA delivers a list of potentially 

interesting products (based on a profile of what other "similar" 

customers have ordered). They are seeking to encourage the 

purchase of additional items and thereby increase the average 
basket value. A major task of talented merchants is to pick the 

profit generating items and discard the losing items. This type 

of analysis is certainly not the exclusive domain of the 

supermarkets. Transaction database in some applications can 

be very large. It may be simple enough to sort items by their 

profit and make the selection whereas some transaction 

database requires sophisticated analysis. For example, Wal-

Mart in Hedberg quoted about 20 million sales transactions 

per day.  

However, a very important aspect is ignored in market 

analysis viz the cross selling effect. There can be items that do 
not generate much profit by themselves but they are the 

catalysts for the sales of other profitable items. Advanced 

implementations of MBA encouraged retailers to drill down 

into customer buying patterns over time to precisely target and 
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understand specific combinations of products, departments, 

brands, categories and even time of day. A 1% lift in sales or 

0.1% improvement in margin, can tip the balance between 

success, survival, or failure. But below a retailer’s top line 

sales, success requires constant fine tuning of the controls 

available to the retail disciplines, such as planning, buying, 

advertising, promotions, assortments, site selection, etc.  

With an MBA, leading retailers can drive more profitable 

advertising and promotions, attract more customers, increase 

the value of the market basket, and much more. Leading 

practices in the MBA include more profitable advertising and 

promotions, more precise targeting of offers, attracting more 

traffic into the store, increasing the size and value of the 

market basket, testing and learning by using the market place 

as a laboratory, determining the magic price point for the 

store, matching the inventory to the customer need, etc that 

results in the optimized store layout which improves success 

across the board.  

Usually the transaction dataset format consists of 

transaction ID and its corresponding itemsets where the 

transaction ID uniquely identifies each transaction and the 

item list shows a list of items that were purchased. Most of the 

retail shops have a format: Tid < item list > 

 In order to convert the market basket format into 

NewGenMax input format, consider every product in the 

market as an item, each customer’s basket as a transaction and 

the set of products within that basket as an itemset. As some 

transaction ID is given to each transaction in order to handle 

large databases easily , that makes us keeping the transaction 

ID instead of transaction name. Similarly, every item name is 

replaced with its unique ID like T1 <1, 3, 5> means items with 

ID 1, 3 and 5 are contained in transaction 1 that is denoted by 

T1. Table 5.1 shows five transactions with their respective 

itemsets: 

Table 5.1: Format of Retail Shop Database 

 

TID Itemsets 

1 1, 3, 5 

2 1, 7, 19 

3 8, 13, 26, 52 

4 2, 5, 13, 16, 28, 40 

5 18, 27, 33, 34, 36, 52 

VI.   CONCLUSIONS 

This paper presents a novel algorithm NewGenMax for 

finding maximal frequent itemsets. NewGenMax is giving 

better performance than the GenMax algorithm. This has been 

maded possible by reducing the number of iterations while 

converting local maximal frequent itemsets into maximal 

frequent itemsets.  

In NewGenMax, the procedure of calculating subset for 

each itemset in the LMFI list and taking its set difference 

results in less number of iterations. Based on our theoretical 

and experimental analysis, NewGenMax generates the same 

MFI as in GenMax but with the earlier pruning of non-

maximal itemsets, the time for scrolling the whole LMFI list 
decreases leading to less memory utilization. Both 

NewGenMax and GenMax are implemented and their 

performance is evaluated on the basis of execution time and 

the number of iterations generated while converting MFI from 

LMFI.  
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