

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 106-110
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

106

Abstract—Driver impairment due to drowsiness is known

to be a major contributing factor in many motor vehicle

crashes. More than 30% of the road accidents are caused

by the fatigue of the driver. At present, there are various

drowsiness detection systems available in the market.

These systems are implemented using any one of the

various implementation techniques such as detection of

any behavioral pattern, changes in physiological

conditions, or vehicular motion. Consequently, the

accuracy of such systems has been found to be low. Here,

we combine various changes in the facial expression in

order to achieve more accurate results. The purpose of this

system is to reliably quantify commercial motor vehicle

driver drowsiness and provide a real-time warning to the

driver. The measures that can be used for the purpose are

eye closures, frequency of yawning, head tilt, etc. The

system has been implemented by means of a camera, a

Raspberry pi board and corresponding alert system in the

form of a buzzer. Around 7000 facial patterns were used to

train the system to obtain accurate results.

Index Terms — Cascade Classifier, drowsiness detection,

haartraining, OpenCV, Raspberry pi, template matching

I. INTRODUCTION

 major share of road accidents that happen today are

caused by the drowsiness of the driver. Many lives

could be saved if there was a mechanism by which the

drivers could be given an alert when they start feeling drowsy.

Statistics indicate the need of a reliable driver drowsiness

detection system which could alert the driver before a mishap

happens. This paper aims at developing such a system that can

observe the mannerisms of the driver, obtain relevant data,

process the information and produce the alert according to the

situation at hand. Research has shown that there are basically

three ways to determine drowsiness in a driver: vehicle-based

measures, behavioural patterns, and physiological measures

[1], [2].

This paper uses the behavioural measures of the driver to

determine whether the driver is drowsy or not. We try to

combine two of the behavioural measures that a driver can

display when he/she feels sleepy while at the wheel, vis-à-vis:

movement of the eye, and movement of the head and facial

changes. When sleepy, every person has a tendency to blink

frequently or to shut their eyelids in slow movements. Another

behavioural measure displayed by human beings when drowsy

is frequent yawning. Also, for most people, the manner in

which their head is kept changes abruptly as they fall asleep.

That is, our head tends to swing down a few angles in an

instant when feeling drowsy. We have developed the software

tools to detect and track the aforementioned behavioural

patterns, record the data, process the information and produce

the desired result according to the output produced, such as, an

alert to wake the driver up before the scene goes awry.

Most of the published studies on using behavioral approaches

to determine drowsiness focus on blinking. This measurement

has been found to be a reliable measure to predict drowsiness

and has been used in several commercial products. However,

it has been known to produce inaccurate results at times. This

paper puts forward a system that attempts to combine multiple

behavioural attributes such as eyelid movement, head

alignment, yawns, etc. to detect drowsiness in the driver since

obtaining data from multiple inputs have more chances of

improving the accuracy of the system.

The system has been implemented using the input from a

camera that is to be fixed in the car, in front of the driver. The

camera records eyelid movements, lip movement, and the

head movement after which this data is processed producing

the corresponding output.

Whenever the user closes his/her eyelids for more than a

predefined period of time, the alert goes off. This is detected

by comparing and matching the images used in the training

phase of the system with the real time images captured by the

camera. The comparison and matching is done after each

DROWSINESS DETECTION SYSTEM FOR

DRIVERS USING

HAARTRAINING AND TEMPLATE

MATCHING

Lorraine Saju, Christeena Jestine, Farhana Yasmin, Surekha Mariam Varghese

 Computer Science and Engineering Department,

Mar Athanasius College of Engineering, Kothamangalam, Kerala, India

A

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 106-110
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

107

frame, and the user is given an alert upon detection of closed

eyelids in a certain number of continuous frames.

The next sections of the paper discuss technical details of the

project such as the hardware used, various technologies used

to implement the system, etc. It then goes on to explain the

implementation details of the prototype system which has

been executed by means of the Raspberry pi single-board

computer.

II. BACKGROUND

2.1 Ensemble Learning

Ensemble learning is a machine learning process by which

multiple models, such as classifiers or experts, are

strategically generated and combined to solve a

particular computational intelligence problem. Ensemble

learning is primarily used when improvement in the

performance of the system is needed, or to minimize the

probability of producing poor output. The whole process

involves classification, prediction, function approximation,

etc. Other applications of ensemble learning include assigning

a confidence to the decision made by the model, selecting

optimal (or near optimal) features, data fusion, incremental

learning, non-stationary learning and error-correcting. This

paper focuses on cascade classifier of ensemble learning,

which consists of various stages, each stage of which is a

collection of weak learners.

2.1.1 Cascade Classifier

The cascade classifier is a part of ensemble learning, which is

implemented in various stages that consists of simpler

classifiers. These are applied to a region of interest until input

is accepted or rejected.

First, a classifier (namely a cascade of boosted classifiers

working with haar-like features) is trained using a few

hundred sample views of a particular object (i.e., a face or

eyes in this case), called positive samples, and negative

samples, which are arbitrary images. Every positive and

negative sample is scaled to the same size.

After a classifier is trained, it can be applied to a region of

interest in an input image. This region should be of the same

size as the samples used during the training. The output of the

classifier will be “1” if the region is likely to show the object

that we are looking for (i.e., face/eyes), and “0” otherwise. It

is also possible to search for the object in the whole image by

moving the search window over the image and checking every

location using the classifier. The classifier is designed so that

it can be easily “resized” in order to be able to find the objects

of interest at different sizes. This procedure is found to be

more efficient than resizing the image itself. So, to find an

object of an unknown size in the image the scan procedure

should be done several times at different scales.

2.2 OpenCV

OpenCV (Open Source Computer Vision) is a cross-platform

library of programming functions mainly aimed at real-

time computer vision. It is free to use, and provides an array of

functions for machine learning, neural networks, and other

applications of artificial intelligence. To support machine

learning, OpenCV provides a statistical machine

learning library that contains boosting, decision tree learning,

Artificial Neural Networks (ANN), Support Vector Machine

(SVM), ensemble learning, etc.

It is written in C++ and the primary interface is in C++ as

well. There are bindings in Java, Python,

and MATLAB/OCTAVE. To encourage adoption by a wider

audience, wrappers in other languages such as C#, Ch,

Perl, and Ruby have been developed. All of the new

developments and algorithms in OpenCV are now developed

in the C++ interface.

2.2.1 HaarTraining

The OpenCV library provides a great number of functions for

face detection, feature detection such as eyes, mouth,

sunglasses, etc. Furthermore, it provides programs (or

functions) that are used to train classifiers for their face

detection system, called HaarTraining [4]. We can create our

own object classifiers using these functions.

Object Detection using Haar feature-based cascade classifiers

is a machine learning based approach where a cascade

function is trained from a lot of positive and negative images.

It is then used to detect objects in other images.

The algorithm extracts images using a lot of positive (faces,

eyes, etc.) and negative images (arbitrary images without

faces). Each feature is a single value obtained by subtracting

sum of pixels under various regions of the images. Features

include edge features, line features, etc. For each feature, the

pixels used for extraction differs.

Now all possible sizes and locations of each image kernel are

used to calculate plenty of features. But all the features

extracted will not be useful for the purpose at hand. For

example, in this paper only eyes, mouth, and the face are

relevant. Other facial features like cheeks, nose, forehead, etc.

are useless as far this paper is concerned. To extract only those

features relevant to the project, we use a technique called

Adaboost.

For this, we apply each and every feature on all the training

images. For each feature, it finds the best threshold which will

classify the faces to positive and negative. Then we select the

features that display the least error rate (best threshold).

Initially each feature is given an equal weight. As the process

continues, the weights are updated according to the results

obtained so that accuracy is improved. The process is repeated

until the required level of accuracy or the required number of

features is found.

Final classifier is a weighted sum of these weak classifiers. It

is called weak because it alone can't classify the image, but

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 106-110
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

108

together with others forms a strong classifier. With around

6000 images, even 200 features can provide 95% accuracy [3].

In an image, most of the image region is non-face region. So it

is a better idea to have a simple method to check if a window

is not a face region. If it is not, discard it in a single shot. Don't

process it again. Instead focus on region where there can be a

face. This way, we can find more time to check a possible face

region.

For this they introduced the concept of Cascade of Classifiers.

Instead of applying all the 6000 features on a window, group

the features into different stages of classifiers and apply one-

by-one. (Normally first few stages will contain very less

number of features). If a window fails the first stage, discard

it. We don't consider remaining features on it. If it passes,

apply the second stage of features and continue the process.

The window which passes all stages is a face region. This is

how face detection and other feature detection is done using

haartraining by means of cascade classifiers.

2.2.2 Template matching

Template Matching is a method used for finding whether a

template image is present in a larger image or not. OpenCV

comes with a function matchTemplate() for this purpose. To

do that, the function simply slides the template image over the

larger image and compares the template and patch of input

image under the template image. There are several comparison

methods available in OpenCV.

The function returns a gray scale image as the output, which

will tell you how much of the template image matches with

the input image. Once you got the result, you can

use minMaxLoc() function to find where the maximum/

minimum value is.

2.3 Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that

plugs into a computer monitor or TV, and uses a standard

keyboard and mouse. It is a capable little device that enables

people of all ages to explore computing, and to learn how to

program in languages like Scratch and Python. It is capable of

everything that a normal desktop computer can do, from word-

processing, and playing games, browsing the internet and

playing high-definition video, to making spreadsheets, etc.

The Raspberry Pi has the ability to interact with the outside

world, and has been used in a wide array of digital maker

projects, from music machines and parent detectors to weather

stations and tweeting birdhouses with infra-red cameras. It can

is an effective tool to perform functions like digital signal

processing, and image processing.

III. SYSTEM DESIGN

The system is designed as an independent unit, with a camera,

a processor, and an alert system. The camera should support

high definition capture for optimum performance. Since the

system has to be flexible enough to use any time of the day,

lack of light must never be an issue. Therefore, a nonintrusive

light, like the IR can be provided. This would ensure ample

lighting independent of natural light that will not disturb the

driver, but will be detected by the camera. The video thus

captured, is given as the input to the processor. The processor

must be capable of image processing, with at least 1 GB of

memory, x MHz speed and 2 GB RAM. The processor is

connected to a buzzer which acts as an alert system. When

required, the buzzer beeps, alerting the user to focus on the

road or take a break to refresh.

1. Sample Collection

The system is almost entirely dependent on face detection, and

hence the primary step towards the development involves the

creation of a system to detect human face and its basic

features. Face detection is done using Cascade Classifier,

which requires a very large set of samples for training. Almost

7000 images each of the face, eyes, and mouth were collected

from various sources. An equal amount of negative images

were also collected. While the positive image shows an object

that must be detected, the negative image shows a similar

picture with the object missing from it. For extracting the

target object from the positive image, a small program called

'object_marker.exe' has been used.

Fig 1. Extraction of features

Fig 2. Extracted images stored as text file

The target objects thus extracted (figure 1) from the positive

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 106-110
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

109

samples will be stored as a text file. Figure 2 shows a snippet

of the text file. The first field indicates the name of the image.

The second field indicates the number of target objects

detected, the third and fourth fields give the x and y

coordinates, respectively of the top left corner of the rectangle

denoting target object's location.

2. Sample Creation

OpenCV library provides a number of programs that can be

used to train classifiers for face detection system called

haartraining. The utility opencv_createsamples is used to

prepare a training dataset of positive and test samples. It

provides functionality for dataset generating, writing and

viewing. The large set of positive samples is created from the

object image by random rotation and other transformations.

The amount and range of randomness can be controlled by

command line arguments of opencv_createsamples utility. Fig.

7 shows command used.

The output is a file with *.vec extension, which is a binary

format of images.

3. Cascade Training

Here, opencv_haartraining has been used to train a cascade

classifier. This process may take a number of days depending

on the number of samples and stages of the cascade classifier.

Once the application has finished execution, an XML file will

be generated in the specified folder. The XML file is the final

trained cascade classifier.

4. Implementation

There are two basic algorithms that are explained below which

explains how the system works. The first one is the Match

Algorithm, which is for template matching and the second is

the Drowsiness Detection Algorithm, which forms the core of

this paper.

Algorithm 1. Match algorithm

Input: Source image, I

Input: Template image, T

Output: minimum value of the matrix that is created as the

result of the matching

1. Match I with T using OpenCV matchTemplate function.

2. Normalize the resulting matrix

3. Find the global minimum in the array, minVal

4. Return minVal

Algorithm 2. Drowsiness detection algorithm

1. Get the input from the camera and store the frame in a

matrix, source

2. Detect face, eyes and mouth using the trained cascade

classifier

3. Store the images of eyes, face and mouth in normal

condition in face_template, eyes_template and

mouth_template

4. Repeat while the system is in ON state

4.1. capture a frame from the camera into the matrix,

source

 4.2. face_min = Match(source,face_template)

 eye_min = Match(source,eyes_template)

 mouth_min = Match(source,mouth_template)

 4.3. if (count<5) then

 avg_face_min = avg_face_min + face_min/5

avg_eye_min = avg_eye_min + eye_min/5

 avg_mouth_min = avg_mouth_min + mouth_min/5

 count++

 endif

 else

 if (face_min-avg_face_min > CONST1)

 sound alarm

 if (mouth_min-avg_face_min > CONST2)

 detected yawn

 if (yawn detected more than 5 times in a minute)

 sound alarm

 if (eye_min-avg_face_min > CONST3)

 detected eye closure

if (eye closure detected in 10 or more continuous

frames)

 sound alarm

Algorithm 1 matches a template image with a source image

with the help of the OpenCV matchTemplate function, which

has been explained in the previous section.

Since we use the CV_TM_SQDIFF_NORMED match

method, the best matches are lower values. Hence we find the

global minimum value of the normalized resulting matrix and

return it.

Algorithm 2 describes the working of the system. First, as

described in the algorithm, we detect the face, eyes and mouth

of the person (in his alert state), looking at the camera. This is

done by including the XML files that are the final trained

cascade classifiers. We have used three classifiers, one each

for face, eyes and mouth.

Fig 3. Detection of face, eyes, and mouth

Once detected, we capture them (figure 3) and store them as

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 106-110
 Published Online April - May 2016 in IJEAST (http://www.ijeast.com)

110

templates for later comparisons. We store them in matrices. It

is these comparisons that help us detect whether the person

has become drowsy or not.

Now the system can start functioning. Each frame that is

captured by the camera is searched for the three template

images that has been previously stored (Steps 4.1 and 4.2),

using the Match function explained in Algorithm 1.

For the first 5 frames, we find the average of the return values

face_min, mouth_min and eye_min (Step 4.3). For the

remaining frames we compare the return values with the

average value calculated for face, eyes and mouth. If the

difference calculated is more than a constant value (CONST1,

CONST2 and CONST3 for face, mouth and eye respectively),

then we can assume that a change in the features has occurred.

If the change is for face, then that means his face is no longer

straight and the alarm is sounded instantly. If the change is for

eyes, then it could mean that he is blinking continuously or

that he is dozing off. So we make sure the eye is closed for a

reasonable number of frames before sounding the alarm. If the

change is for mouth, it means he is yawning wide. So if a

yawn is detected (figure 4) more than five times in a minute,

the alarm will be sounded to alert the driver.

Fig 4. Detection of yawn

The prototype has been implemented using Raspberry pi

board. The input from the camera is connected to Raspberry

pi, which runs these algorithms on the input to detect

drowsiness in the user. The system can be made more

powerful and fast by using processing boards that possess

higher processing capacities.

IV. CONCLUSION

This project aims at developing a software tool for timely and

accurate detection of drowsiness in a driver while at the wheel

by considering multiple facial features as inputs. By capturing

normal image of the user and comparing it with the input feed,

the system detects yawns and eye closures to check whether

the user is drowsy or not. Input is captured by the cameras,

processed by Raspberry pi, and the output is in the form of a

buzzer that gives the user an alert as and when drowsiness is

detected. The limitation that can act as a detriment to the

precision of this system would be poor lighting. This can be

overcome by using an appropriate lighting system, if required.

V. REFERENCES

[1] S. Abdul-Kareem, Haitham Hasan. Static hand

gesture recognition using neural networks. Springer

Science+Business Media B.V. 2012

[2] Drowsy Driver Detection System, Neeta Parmar, Peter

Hiscocks, Department of Electrical and Computer

Engineering, Ryerson University.

[3] Paul Viola, Michael Jones. Rapid Object Detection using

a Boosted Cascade of Simple Features. Accepted

conference on computer vision and pattern recognition;

2001.

[4] OpenCV 2.4.12.0 documentation. Cascade Classifier

Training,

http://docs.opencv.org/2.4/doc/user_guide/ug_traincascad

e/; 2015, [Accessed 12-12-2015]

http://docs.opencv.org/2.4/doc/user_guide/ug_traincascade/
http://docs.opencv.org/2.4/doc/user_guide/ug_traincascade/

