

 International Journal of Engineering Applied Sciences and Technology, 2016

 Vol. 1, Issue 9, ISSN No. 2455-2143, Pages 131-135
 Published Online July – August 2016 in IJEAST (http://www.ijeast.com)

131

AN EFFICIENT SCHEDULING AND LOAD

REBALANCING STRATEGY IN DFS WITH

EXCELLENT SECURITY MECHANISM

Miss. Priyanka A. Dhande

Department Of Computer Engineering, Aissms

College Of Engineering, Keneddy Road, Pune
411001

Prof. A. J. Kadam

Department Of Computer Engineering, Aissms
College Of Engineering, Keneddy Road, Pune

411001

Abstract— disbursed file system could be a preliminary section

building block within the cloud computing. A widespread

quantity of statistics is categories over the amount of bite servers

and allocates each chunk to separate distinctive node to hold out

Map-Reduce characteristic parallel over each precise node that's

the primary functionality in distributed system. If immense wide

range of documents are present, and assesses to it large vary of

document is will increase then the principal node turns into

impediment in cloud computing. the burden balancing task is

employed to limit the burden on basic centralized node with the

assist of load rebalancing set of rules the load of nodes is

balanced additionally to the movement value is additionally

reduced. It leads to load asymmetry in disbursed system. To beat

the burden inequality problem, distributed load rebalancing

algorithmic has been enforced that depends upon on:

 Performance of device.

 Evaluation of load in among precise nodes.

 Stability of various structures.

 Interaction among the nodes.

 Nature of load to be moved.

Protection mechanism has been applied on documents. At an

equivalent time as importing or downloading files are holds on

sub servers and retrieved from sub servers. Earlier than

importing or downloading that record are saved in encrypted

format and retrieved from the decrypted format.

Keywords— Cloud computing, Load re-balancing, Distributed file
system, MD5 with DES.

I. INTRODUCTION

 On-demand get admissions to from shared pool configurable

computing assets are often equipped through the cloud

computing version. software , application, platform associated

offerings ar well-found via the cloud computing which are
often accessible while not requiring any ability more or less

the technology, and accessible with abundant less

management efforts. Cloud is often personal or public and it
imply less understanding to use as a result of its user friendly

system. The aim of cloud computing is to supply smooth,

climbable get right of entry to computing assets and it

offerings. Allotted report systems in producing structures

powerfully depend on a significant node for bite reallocation.

this dependence is just inadequate in an exhaustive, failure-

prone surroundings as a result of the very fact the central load

balancer is place beneath full-size workload that's linearly

scaled with the device length, and should consequently turn

out to be the performance bottleneck and also the point of

failure. The aim to cut back movement cost as a results of
rebalancing the many nodes as lots as potential to maximise

the network bandwidth to be had to everyday packages. We

have a tendency to examine to place good safety provided for

cloud computing and compare machine performance. In cloud

master server controls amount of slaves, documents it might

transfer, eliminate, and append dynamically. As an example

uploading or downloading of report is completed that's kept in

slaves and retrieved from slaves itself. Before uploading and

downloading that files are saved in encrypted layout and

retrieve during a decrypted format. For encryption and

decryption schemes we are the usage of md5 set of rules.

If the large file is shipped over the system which is completely
depending on crucial node then there's lot of load can be

available over the central node. Right here the load

rebalancing algorithm is used to cope with imbalance of load

[1].

II. EXISTING SYSTEM

Traditional model is simply now not suitable to technique

massive extent of records and that database isn't

accommodated through upscale database server. Centralized

 International Journal of Engineering Applied Sciences and Technology, 2016

 Vol. 1, Issue 9, ISSN No. 2455-2143, Pages 131-135
 Published Online July – August 2016 in IJEAST (http://www.ijeast.com)

132

machine creates many bottlenecks while processing more than

one file simultaneously.

Boundaries within the existing device encompass load

imbalance factor, protection problems, absolutely dependence

on principal node, and the movement cost of load elements.

Traditional model is not acceptable to methodology massive

volume of data at intervals that, information is not
accommodated by traditional information servers. Centralized

system creates several bottlenecks whereas methodology

multiple files at the same time shown at intervals the

prevailing System style Diagram. Limitations among the

prevailing system embody load imbalance issue, security

issues, altogether dependence on central node, and therefore

the movement cost of load factors.

State-of-the-art distributed file systems (e.g., GFS and HDFS)

in clouds hold central nodes to manage knowledge of filing

systems and to counterbalance the commutuality of storage

nodes based mostly completely on it data. The centralized

views clarify the planning and implementation of a distributed
classification system.

However, gift days ignorance concludes that once the choice

of storage nodes, the variability of files and therefore the

variability of accesses to files increase unceasingly, the

centralized nodes (e.g., the master in GFS) become a

performance bottleneck, as they are unable to accommodate an

oversized choice of file accesses as a result of sizable amount

of purchasers and existing operations.[1][2]

The most existing solutions are designed whereas not

considering movement cost and node.

Conclusion from the literature is that current system is having
a number of the constraints that want to be addressed.

III. OBJECTIVES

General objectives of this system are

 Basically depiction on data processing to handle the
huge records and to boom the system performance

 To modify the load imbalance aspect, allocate chew
of documents unambiguously most of the distinctive

nodes such no node manages an excessive wide

selection of chunks

 The security provided in cloud is incredibly confined.
So, for reinforcing the security md5 algorithms are

enclosed to the device.

IV. SYSTEM MODEL

Here, tremendous amount of info document is divided into

wide selection of chunks and it distributes to nodes like (node

1, node 2) the files are often dropped at the sub server, deleted

or appended dynamically over sub server. It will assist to

attenuate the shortage of statistics. Fig.1 shows that, given

massive record is dived into amount of components which part

are distributed over distinctive bite servers shown by using

node one, node 2.

Suppose person needs to add his record the job manager can

distribute the burden of major server into sub servers. The

decision node within which the job manager will work is used

to control all the meta-facts records and calculate load of each

node.

However, it actions from the centralized to distributed system.
The equally load rebalancing set of rules is also distributed

over each node and also the md5 with DES set of rules are

applied over node subsequently the facts node provides all of

the community services. Customers are capable of access

statistics from sub server that's records node notably do to

permit to save lots of statistics or retrieval of records whereas

computation is performed that will minimizes the workload of

the principle server.

 Suppose, the system consisting Module 1, Module 2,

Module 3, and Module 4 which consist for analysis

and reading the document.

Where,

Module 1 shows creation of virtual machines.

Module 2 shows creation of the data chunk module.

Module3 shows particular weight of the node calculation.

Module 4 shows rebalancing module.

 For creation of virtual machines:

Let Module1 consisting set of parameters for virtual machine

creation and Module2 for creation of data chunk.

Module1& Module2= {VM Size of virtual machine, data in
chunks}

Where,

Chunk Size of data=Exact size of file

Data Node consist data which can be used to store.

Weight calculation of data node can be performed.

Lets module 3 calculate the weight of data node.

Module3= all data nodes with chunks}

 Automatic Rebalancing can be active through

If weight of the node is less than the average weight =>

proceed

Otherwise check next node
If node having Excessive load

 While (check all data nodes weight)

Otherwise create new node.

Module4 is used to generate maps and store and retrieve data

from data nodes, analysis graph.

Security part has been done using MD5_DES algorithm

because it is simple to implement and it is used to provide

hashing with message digest of the message of arbitory length

and data encryption standard.

 International Journal of Engineering Applied Sciences and Technology, 2016

 Vol. 1, Issue 9, ISSN No. 2455-2143, Pages 131-135
 Published Online July – August 2016 in IJEAST (http://www.ijeast.com)

133

A. System Architecture:

Fig 1: System Architecture

B. Procedure:

 To begin with the facts document need to be

uploading from client over the server.

 It goes towards activity manager or job manager;

with the assist of weight calculation set of rules

activity manager calculate the each facts node load,

before dedicate on information.

 Advent of the report chunks for every server

primarily based whole on server load are often acting.

 Statistics cryptography should be done through server

with MD5-DES cryptography.

 Assign each chunk to specific slaves.

 Load rebalancing venture are often finished.

 Consumer collects all of the chunks then the record

can be decrypted.

 Then a good way to be regarded by means of

consumer.

C. Necessity of Load Rebalancing:

 Do away with the dependence on relevant nodes.

 Operates in a distributed manner wherein nodes

perform their load-balancing duties independently

without international knowledge of the system.

A. Algorithm: Equally Load Re-Balancer Algorithm

Input: every node load base on present day hitting
Output: allotted data to every node.

Step 1: initialize all information nodes or slaves which may be

connected to master node as n.

Step 2: for every (i…n)

 Take every ith node server load.

 A[i] =&weight; ith node load degree or hit load.

End for.

Step 3: get total length of A.

Create the statistics asked chunks.

 K=A. length ();
Step 4: generate k mappers for distribute records.

Step 5: assign every block to every mapper.

Step 6: request to server for handle an info.

Step 7: finish procedure.

B. Algorithm: Load Balancer Algorithm.

Input: files with data.

Output: File procedure with server load balancing.

Step 1: Initialize servers and its sub-servers.

Step 2: Establish connection between sub-server and servers

using the IP address or Port number.

Step 3: Upload File to server that should be shared.
Step 4: Data encryption should be performed by server with

MD5 Encryption.

Step 5: Disperse the file into multiple chunks.

Step 6: Calculation of each sub server memory

Step 7: Divide the total chunks value by total number of sub-

servers

Step 8: Based on chunk memory capacity Upload each chunk

into sub servers

Step 9: If Capacity is less then transfer the excess chunks into

next sub-servers

Step 10: Each chunk will be appended with an index value.
Step 11: When the client request for a file, that will be

received from different sub-servers based on the index value.

Step 12: Client collects all the chunks then the file will be

decrypted, then that will be viewed by client.

V. IMPLIMENTATION

During this work the proposed solution are investigating and

presenting the new framework for addressing the problem of

finding relevant result. The aim of this work is to improve the

performance of algorithm. The results demonstrated in this

work are showing the current state of work done over practical

implementation of this algorithm.
A. Modules

This proposed architecture consists of four modules.

 First module is job scheduler. The client submits their

requests on server in the cloud environment. When an

available resource task is assigned to a cloud,

availability of resources can be checked by job

scheduler. First file uploading and user

authentication.

 Second server load degree calculation and chunk

creation.

 Third module provide the re-balancing the data
between servers base on current loads.

 Final describe the performance analysis of system.

 International Journal of Engineering Applied Sciences and Technology, 2016

 Vol. 1, Issue 9, ISSN No. 2455-2143, Pages 131-135
 Published Online July – August 2016 in IJEAST (http://www.ijeast.com)

134

B. Module Description

1) Authentication and File upload:

This module describe the user login registration likewise

as file uploading half, once transfer the file key generation

and encoding has done.

2) Server Load Calculation:
This module every server calculation done base on

memory likewise processor.

3) Load Rebalancing:

This module describes the load distribution and chunks in

numerous servers.

4) Analysis Module:

This module reflects the projected system accuracy

comparison with different systems. Totally different graphs

can show the planned system accuracy, and eventually we

tend to conclude our system is healthier than all the present

systems.

VI. RESULT AND DISSCUSSION

After implementing some a part of system we tend to got

system performance on satisfactory level. Fig.2 shows the

primary algorithmic program performance for user plain

conversion in addition decoding. For the implementation we

tend to use virtual machines as information node and distribute

the info into totally different servers. Within the check part

system initial save the information into every data node

parallel with cryptography and collect as same decoding.

Following graph shows system performance of each ways.

0

100

200

300

400

500

10 MB 20 MB 30 MB 40 MB

Existing Enc

Existing Dec

Proposed Enc

Proposed Dec

Fig.2 Execution Performance with Data Nodes

The above graph compares with existing results taken from

ECC encryption and used MD5. Both algorithms bar shows
the how much time or execution complexity is required for

both encryption as well as decryption.

0

20

40

60

80

100

M 1 M 2 M 3 M 4

Load of

processor(%)

Load of

memory(%)

Fig.3 Calculation of Load for each VM

Graph shows the each VM load in percentage with memory as

well processor. Second algorithm calculate each virtual

machine load dynamically after create data chunks. X graph

show the each VM id and Y shows the load of percentage.

VII. CONCLUSION

Load rebalancing drawback principally happen in distributed

filing system. Load ought to be balance over numerous hubs to

boost framework execution, latent period and MD5 security

mechanism is additionally applied over the rebalancing task.

Load rebalancing for distributed file systems is specially used

for: big-scale, dynamic and intensive clouds of knowledge that

reallocates the file chunks in an exceedingly uniform manner.

None of the node will manage excessive quantity of load.

VIII. REFERENCES

[1]. Hung-Chang Hsiao and H.C et al, “Load Rebalancing for
Distributed File Systems in Clouds”, IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24,

NO. 5, MAY 2013.

[2] L.Ismail et al, “FSBD: A Framework for Scheduling of

Big Data Mining in Cloud Computing”. 2014 IEEE

International Congress on Big Data.

[3] J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple

Load Balancing for Distributed Hash Tables,” Proc. First Int’l

Workshop

Peer-to-Peer Systems (IPTPS ’03), pp. 80-87, Feb. 2003.

[4] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online
Balancing of Range-Partitioned Data with Applications to

Peer-to-Peer

Systems,” Proc. 13th Int’l Conf. Very Large Data Bases

(VLDB ’04), pp. 444-455, Sept. 2004.

[5] A. Rowstron and P. Druschel, “Pastry: Scalable,

Distributed Object Location and Routing for Large-Scale

Peer-to-Peer Systems,”

Proc. IFIP/ACM Int’l Conf. Distributed Systems Platforms

Heidelberg, pp. 161-172, Nov. 2001.

[6] D. Karger and M. Ruhl, “Simple Efficient Load

Balancing Algorithms for Peer-to-Peer Systems,” Proc. 16th

ACM Symp. Parallel

 International Journal of Engineering Applied Sciences and Technology, 2016

 Vol. 1, Issue 9, ISSN No. 2455-2143, Pages 131-135
 Published Online July – August 2016 in IJEAST (http://www.ijeast.com)

135

Algorithms and Architectures (SPAA ’04), pp. 36-43, June

2004.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” Proc. Sixth Symp.

Operating System

Design and Implementation (OSDI ’04), pp. 137-150, Dec.

2004.
[8] T.Sakthisri and S.Pallavi, “Balancing Blocks For

Distributed File System In Clouds By Using Load

Rebalancing Algorithm,” Proc. International Conference on

Information Systems and Computing (ICISC-2013), pp. 220,

Jan. 2013.

[9] Revathy R and A.Illayarajaa “Efficient Load Re

Balancing Algorithm for Distributed File Systems,” Proc.

International Journal of Innovative Technology and Exploring

Engineering (IJITEE) ISSN: 2278 -3075, Volume-2, Issue-6,

May 2013.

[10] Yatendra Sahu and R.K. Pateriya, “Cloud Computing

Overview With Load Balancing Techniques,” Proc.
International Journal Of Computer Applications (0975 –

8887) Volume 65– No.24, March 2013.

[11] Aarti Khetan, Vivek Bhushan and Subhash Chand

Gupta, “A Novel Survey On Load Balancing In Cloud

Computing,” Proc.

International Journal Of Engineering Research & Technology

(IJERT) ISSN: 2278 -0181, Vol. 2 Issue 2, February 2013.

[12] S.Indira and P.Jyothi, “Load Rebalancing In Large-

Scale Distributed File System,” Proc. International Journal

Of Reviews On

Recent Electronics and Computer Science (IJRRECS),
Volume-1, Issue-6, Issn 2321-5461, October 2013.

[13] Ch. Mounika, L. RamaDevi and P.Nikhila, “Simple

Load Rebalancing For Distributed Hash Tables In Cloud,”

Proc. IOSR Journal

of Computer Engineering (IOSR-JCE), e-ISSN: 2278-0661, p-

ISSN: 2278-8727 Volume 13, Issue 2, pp 60-65, Jul. - Aug.

2013.

