
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 139-145
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

139

METRICS FOR SOFTWARE

MAINTAINABILITY AND USABILITY IN AGILE

ENVIRONMENT
Priyanka Praveen Kantha

 Department of Computer Science & Engineering Department of Computer Science & Engineering

 BRCM CET, Bahal, MDU, India BRCM CET, Bahal, MDU, India

ABSTRACT: It is not easy to comprehend the quality and

features of software unless we are familiar of its software

development process and software products. Some

measurements process should be there to predict the

development of the software, and to evaluate the software

products. In the conventional technique for the product

advancement, there are a number of measurements to

compute the maintenance and utilization of programming.

This investigation is to understand whether the same

measures apply to Agile, or there is a need to modify a few

measurements utilized for the agile environment. This

paper gives a brief view on Maintainability and Usability

by which the specified quality factors of software can be

predicted. Maintainability and Usability are emerging

attributes of software quality, which play a very important

role in determining the quality and excellence of a software

system. Consequently, the usage of software metrics

improves quality and excellence of software.

Keywords: Software Maintainability, Software usability,

agile environment, Software metrics

I. INTRODUCTION

Agile methodology is a product strategy, which depends on

iterative and incremental techniques for programming

advancement.

Small groups work upon individual modules. As these

modules are created, it will be sent to the customer for audit.
This model is adaptable, which incorporates changes

considering client needs. Improvement techniques are utilized

for programming advancement as per the standards and

practices.

Maintainability is the process of altering software after it has

been delivered and in proper use is called software

maintenance [1]. Maintenance can be referred to as the

process that is carried out when software goes through

modifications and changes to code and its related

documentation and credentials due to fault or the requirement.

Maintenance consumes 40% to 80% of price of the software

and is therefore probably the most important phase of software

Life cycle. Manufacturing enhancements contributes to 60%

of maintenance cost, which is something that makes the

systems is going to provide additional value.

Maintainability deals with period of maintenance outages or
how long it takes to complete (easiness and speed) the

maintenance and preservation actions measured up to a datum.

The datum includes maintenance is carried out by recruits

having specified expertise levels, using approved procedures

and resources, at each prescribed level of maintenance. There

are 4 types of maintenance:

1. Corrective Maintenance: This refers to amendments

initiated by defects in the software.

2. Adaptive Maintenance: It includes transforming the

software to match alteration in the ever changing

environment.

3. Perfective Maintenance: It means civilizing the

processing efficiency or performance, or streamlining

the software to improve changeability.

4. Preventive Maintenance: This may lead enhance the

complexity of the software, which reflects

deteriorating structure.

Figure 1: Software maintenance image representation

On the other hand usability relates how the system

communicates with the user, and it includes the following five

basic attributes: learnability, efficiency, user retention over

time, error rate, and satisfaction [2].

 Learnability: How simple it is to increase proficiency to

complete the job and gain knowledge of the foremost

functionality of the system. It generally assess this by

calculating the time a user pay out working with the system

before that user needs to complete certain tasks in the time it

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 139-145
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

140

would take an expert to complete the same tasks. This

attribute is having a lot of significance for trainee users.

 Efficiency: The quantity of tasks per unit of time that any

user can carry out using the software system. The higher the

usability of system is, more rapidly the user can complete

the task.

 User retention over time: It is significant for irregular

users to be capable of using the system without scrambling

the learning curve again. This trait shows how finely the

user memorizes how the system will work after a span of

non-usage.

 Error rate: This attribute contributes negatively to

usability. It does not meant to system errors. Oppositely, it

points to the number of errors the user commits while doing

a task. Good usability results in low error rate.

 Satisfaction: This shows a user’s subjective impression

of the system. According to ISO 9241, Part 11, usability is

“the extent to which a product can be used by particular

users to accomplish specified goals with effectiveness,

efficiency, and satisfaction in a specified context of use.”

This definition bounds usability of a system to exact

conditions, needs, and users.

Figure 2: Software Usability representation

II. SOFTWARE METRICS

A mathematical measure of software that is susceptible to

differences in the uniqueness of software can be termed as

Software Metrics. These metrics measure an attribute which

the body of software has [3]. Its main objective is to know the

software development process by controlling the different

aspects.

Software metrics provide an easy and inexpensive method to

detect and also correct the possible causes for low product
quality according to the quality factor as this will be perceived

by the programmers.

Software metrics will be helpful only if they are characterized

effectively and validated to that their worth is proven.

1. A metric should have advantageous mathematical

properties.

2. A software metric should increases when positive traits

occur or, decreases when undesirable traits are

encountered, the value of the metric is supposed to vary in

the same manner.

3. Before publishing or for making decisions validation of

each metric should be done empirically in all the possible

manners.

The information which is gained from software metric can be

used to manage, administer and control the development

process, which will show the way to improvement in the

results of the software product. So, some of the ideal

properties of a software metrics are:

 It must be simple and clear.

 It must be robust in nature.

 It must be reasonable.

 It must have an objective.

 It must be valid.

2.1 MAINTAINABILITY AND USABILITY METRICS

According to our research, if the below metrics is used in agile

rather than the direct numbering game as in conventional

environment, it will be more beneficial to track the progress of

project, measuring value delivered to the customer and make

sure about the on time delivery of the software to client.

Certain measures and their impact on the maintainability and

usability of the software are described below:

TABLE I. Maintainability and Usability Metrics

Metric Name
Importance and their effect on the

maintainability

Maintainability

Index

Maintainability is used to calculate the state of

maintenance. It calculates an index value

between 0 and 100, which represents the

relative ease of holding the codes. A high value

indicates a better maintainability. Evaluations

color code can be used to quickly identify

trouble spots in your code. A green note is

between 20 and 100 indicates that the code has

good maintainability. A yellow note is 10 to 19

indicate that the code is moderately

maintainable. A red mark is a value between 0

and 9 and indicates low maintainability. For

thresholds, the decision is to break into the 20-

80 range from 0-100, so noise levels became

low, and only code reported that there were

really suspicious held.

Complexity Cyclomatic complexity measures the complexity

of the code structure. It is created by

calculating the number of different code paths

in the program flow. A program that has

complex flow control is required more tests, in

order to ensure a good coverage and less

maintainable code.

Code

Hierarchy

It shows the number of class definitions that

extend to the root of the class hierarchy. The

deeper the hierarchy, the more it can be

difficult to understand where methods and

fields are defined and / or redefined.

Inter-module

relations

It measures the connectivity between unique

classes through parameters, local variables,

 Customer Satisfaction

 Customer Confidence in

Business
 User Experience

 Software efficiency

 Software effectiveness

 Software readiness to

respond user

 Software response time

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 139-145
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

141

return types, method calls, generic or model

instances, base classes interface

implementations, defined types of external

decoration attribute. Software design requires

that the types and methods should have high

cohesion and low coupling. High coupling is a

design that is difficult to maintain and to reuse

because of its many dependencies on other

types.

Size There are the approximate numbers of rows in

the code. The count depends on the IL code and

is therefore not the exact number of lines in the

source file. A high number may indicate a type

or method tries to do too much work and should

be shared. It may also mean that the type or

method might be difficult to maintain.

Knowing the likelihood that a user experiences

a problem at any stage of development can be

an important indicator to measure the impact of

usability and ROI. To know what you

experienced, users can rate the discovery of

problems and what problems are found

The entire

working

process

time

It can be used to measure the efficiency and

productivity. Record the time to carry out for a

user to perform a task in a few seconds or

minutes. Departure times of tasks when users

read work scenarios and ends at the time when

the users have completed all actions (including

the review period).

Job satisfaction

level

When users attempt a task and asked about the

difficulty of the task, he answered rarely few

questions about the difficulty of the task were.

Task satisfactions level immediately report

about the difficult task, especially when

compared to other tasks.

Test

Confidence

After the usability test, ask the participants to

answer a few questions about their impression

on the overall usability scenario.

Test

Confidence

After the usability test, ask the participants to

answer a few questions about their impression

on the overall usability scenario.

Inaccuracies Record unintentional actions, slip, errors or

Omissions that a user performs during a

task. Write down every instance of an error

with a Description. For example, "user bore

the name in the first name." You can then

categorize the severity of error or. Errors

provide excellent diagnostic information and,

if possible, should be associated with user

interface issues.

Anticipation Users have expectations about how difficult

a task should be based on subtle cues in the

task scenario. Users are now asking about the

difficulties they face during task performance

and compare it with actual estimates from the

system user (same or different) may be

useful in diagnosing problems.

Page visions /

clicks

Hits were a strong correlation with the time on

the t a s k , w h i c h s h o w e d a good degree of

efficiency. The very enlightening click to

investigate a task success depends on the

success or failure of the first click.

General metric

(GM)

Sometimes it is easier to describe the usability

of a system or task through a combination of

measures into a single score. GM is mainly

composed of three or more metrics.

Now, the focus is to figure out how to measure these

properties for enhancing the quality in an agile environment.

2.2 CHARACTERISTICS IMPACTING SOFTWARE

MAINTAINABILITY AND USABILITY

The characteristics that impacted the software maintainability

are described below:

TABLE II. Characteristics that good maintainable software should

possesses

 Characteristic Name Characteristic Meaning

Accuracy The precision of computations and

control

Completeness The degree to which full

implementation of required function has

been achieved

Conciseness The compactness of the program in

terms of lines of code

Consistency The use of uniform design and

documentation techniques throughout the

software development project

Data

commonality

The use of standard data structures

and types throughout the program

Error tolerance The damage that occurs when the

program encounters an error

Expandability The degree to which architectural,

data, or procedural design can be

extended

Modularity The functional independence of

program components

Traceability The ability to trace a design

representation or actual program

component back to requirements

The below characteristics have great impacts on software

usability:

TABLE III. Characteristics that usable software should possesses

Characteristic Name Characteristic Meaning

Communication

commonality

The degree to which standard

interfaces, protocols, and bandwidth are

used

Execution

efficiency

The run-time performance of a program

Hardware

independence

The degree to which the software is

decoupled from the hardware on which it

operates

Operability The ease of operation of a program

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 139-145
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

142

Security The availability of mechanisms that

control or protect programs and data

Self-

documentation

The degree to which the source code

provides meaningful documentation

Simplicity The degree to which a program

can be understood without difficulty

Software system

independence

The degree to which the

program is independent of non-

standard programming language features,

operating system characteristics, and

other environmental constraints

Training The degree to which the software

assists in enabling new users to apply the

system

III. RESULTS AND DISCUSSION

A variety of shortcomings and drawbacks are there in agile

metrics used now-a-days. A most common issue experienced

in the present set of agile metrics is that they may be liable to

mix up project and process metrics. Some of them discuss

about quality metrics while some others focus only on project

metrics. Very few also talk about process metrics. All the

suggested approaches and metrics needs to be fragmented

over different authors leading to confusion and there is no

logical and clear presentation of a comprehensive metrics set

that clearly distinguishes and defines project, process and

product metrics.

Another primary insufficiency is that most of these metrics not

agile-centric, but adaptations of traditional metrics. Now-a-

days the most widely used as well as recognized agile project

metrics are the Agile EVM. However it too suffers from this

intrinsic limitation in that it is a smart effort to adapt

traditional metrics to somehow "fit" the agile model.

The solution lies in investigating the Agile Manifesto and

building metrics based on the tenets of agile project

management principles.

TABLE IV. Metrics based on Agile Project

Metric Metric Description
Metric

Type
Agile Tenet

S
p

ri
n

t
ef

fo
rt

 f
ac

to
r

Sprint effort factor =

(Items in current

sprint/total feature

list) + [∑ (change

requests from

previous sprints)].

Sprint effort factor

should be evenly

spread through all

sprints.

Project

Metric

Working software

over

comprehensive

documentation.

S
p

ri
n

t

c
o

m
p

le
x

it
y

fa
ct

o
r

Sprint effort factor =

ƒ (modules it

interacts with # of

interface points with

other modules.

Project

Metric

Working software

over

comprehensive

documentation.

C
h

an
g

e
re

q
u

es
t

ef
fo

rt
 Change request

effort = ƒ (adding

new features +

changing previously

defined features -

deliberate

elimination of

features).

Project

Metric

Customer

collaboration over

contract

negotiation.

C
u

st
o

m
er

ex
p

ec
ta

ti
o

n

b
as

el
in

e

Customer

expectation baseline

= (minimal set of

expectation features

from the sprint).

Project

Metric

Customer

collaboration over

contract

negotiation.

Im
p

ac
t

o
n

b
u

d
g
et

 Impact on budget =

ƒ (change request

effort, customer

expectation baseline.

Project

Metric

Customer

collaboration over

contract

negotiation.
R

eu
sa

b
il

it
y

 F
ac

to
r

X

Identifying reusable

components in

system = # of

components added

to library.

The general

guideline is that

higher is better. This

metric aims to

identify more

reusable components

within the system.

Product

Metric

Responding to

change over

following a plan.

R
eu

sa
b

il
it

y
 F

ac
to

r
Y

Reuse of reusable

components in

system = # of

components reused

from library.

The general

guideline is that

higher is better. The

rational is that good

system architecture

makes more use of

reusable components

leading to a higher

quality product.

Product

Metric

Responding to

change over

following a plan

F
ac

et
im

e

Facetime = ƒ (time

each developer is

with business person

and with other

developers on whom

their work is

dependant).

Process

Metric

Individual and

interactions over

processes and

tools.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 139-145
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

143

IV. DESIGN ISSUES FOR PROPOSING

A MODEL
The traditional approach to develop any software is a layered

approach in which the completed software is delivered in last

to fulfill customer requirement. If any further changes are

required by the customer then it is hard to retain within

prescribed budget and schedule but agile uses the functional

approach to develop software in which the customer is

allowed to adjust budget and schedule at each recurrence

according to stand-alone deliverables. The following issues

are faced during proposing a model in agile environment.

1. Problem Recognition Time

2. Administrative Delay Time

3. Tool Time Collection

4. Find problem solving

5. Hypothesis Correction time

6. Proposed model

Software Maintainability and Usability of the suggested model

address to improve the late changing requirements of software

development. Agile processes control change for the

customer's competitive advantage. The major success measure

for increasing assurance is the working software. Agility is

promoted by continuous concern to nominal quality and good
scheme. Periodically usability will be able to identify

problems better and adjusts them. The proposed model should

be good in the agile environment through the implementation

of the concept of maintaining serviceability should be focused.

4.1 TEST-DRIVEN DEVELOPMENT (TDD)

The core part of the agile code development approach

constrained from Extreme Programming (XP) and the

principles of the Agile Manifesto is Test-driven development

(TDD).

According to text, TDD is not all new; a previous reference to
the use of TDD is the NASA Project Mercury in the 1960's.

As its name symbolizes, TDD is not a testing procedure, but

rather it is a development and design technique in which the

tests are previously written to the production code. The tests

are progressively appended during the implementation and

when the test is passed, the code is re-factored for the

enhancement of the internal structure of the code. This cycle is

repeated until whole functionality is implemented. The TDD

cycle consists of the following six fundamental steps:

1. Write a test for a piece of functionality,

2. Run all tests to observe the new test should fail,

3. Write code that passes the tests,
4. Run the test to verify they pass,

5. Re-factor the code and

6. Run all tests to see the refactoring did not change the

external behavior [5].

4.2 CONTINUOUS REFACTORING

Refactoring is a significant aspect of the development process
for programmers working together in a team. The reason for

this is that everyone in the team needs to be able to easily read

and understand the code. Code that is not re-factored is often

hard to read and understand [4].

The process of clarifying and simplifying the design of

existing code without changing its behavior is known as

refactoring. Agile teams are maintaining and expanding their

code much from iteration to iteration and without continuous

refactoring, which is hard to do. This is because undisturbed

code tends to deterioration. Deterioration takes several

structures: unhealthy dependencies between classes or

packages, bad allocation of responsibilities class, too much
responsibility for a class or method, duplicate code, and many

other sorts of confusion and disorder.

4.3 COLLECTIVE CODE OWNERSHIP
A process in which everyone is responsible for all of the code,

which means that everyone is entitled to any change is called

Collective code ownership. Pair programming contributes to

this practice: working in different pairs, all programmers have

the opportunity to see all the parts of the code. A big

advantage for collective ownership claimed that it speeds up

the development process, because when an error occurs in the
code any programmer can fix it. It is a collaboration built upon

high-performance, mutual respect and deep trust [6].

Following two measures should be taken to recognize

nonconformities to the collective code ownership,:

 Semantic factor assessment project truck.

 Syntactic membership activities defined by switching pair

4.3.1 TRUCK FACTOR

The truck number (or truck-factor) is the numeral amount of

people with knowledge; it cannot change if the number of

persons went under a truck at the same time it would not be
able to continue to develop.

The truck factor (TF) of a project can be defined as “the

number of developers on a team who needs to be hit with a

truck before the project is in serious trouble”. Clearly, “to be

hit with a truck” is an acute thought that can be substituted

with more realistic ones such as, for example, to go on

vacation, to become ill, to be out of the office or to leave the

company for another. Ideally, to avoid potential problems, as

advocated by the Extreme Programming (XP) principles of

“Collective code Ownership”, the Truck Factor of a project

should be as high as possible [9].

The project in serious trouble of course do not really need to
be run over by a truck, it could leave the company ill or on

holiday.

 A higher number is better truck

 A low truck number is worse

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 139-145
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

144

4.3.2 SWITCHING PAIR

Pair programming is a style of programming in which two
programmers performs their job side-by-side at one computer,

continuously collaborating on the same design, algorithm,

code, or test [7]. Pair programming has been practiced

sporadically for decades [7]; however, the emergence of agile

methodologies and Extreme Programming (XP) [8] has

recently popularized the pair programming practice.

Proponents of pair programming ("pair") argue that this

increases the long-term productivity by significantly

improving the quality of the code. But it is fair to say that for a

number of reasons, voting is the most controversial and less

widely believed agile practices for programmers.

4.4 TRENDS
It is important for application owners to see continuous

improvement in an application over the track of successive

sprints in an Agile environment. It is likely to see a favorable

trend, where iteration of the application is better than the last.

This makes it important to monitor application performance

trends in terms of requirements. Trending reports allows

giving stakeholders regular snapshots of performance, which

should ideally show that performance is getting progressively

better or it is not degrading at least.

4.5CONTINUAL ANALYSIS

Continual analysis is important in agile processes. Especially

when it comes to application functionality and performance,

both contributors and stakeholders require maintaining a close

track of the progress of the project. Performance analysis

should be both continual and comprehensive to provide them

the observation they require. Analysis takes place all the way

down to the routine scrums that include IT infrastructure and

performance testers as contributors and application

stakeholders.

Contributors are those active and dynamic members of the

sprint team who participate in daily scrums, which give all
stakeholders visibility into the present state of the

development attempts and effort. When all interested team

members know the performance of each sprint, they are in a

better situation to maintain the quality of the whole application

high. As soon as the problems are found, they can be fixed

more early.

4.6 THE DIVERSE EXPERTISE
In the field of IT projects there are a number of diverse

expertise that makes up a development team. For example, a

typical software development team can include programmers,

database administrators, network administrators, security

experts, testers, user interface designers, and others. While the

expertise diversity of a software development team

strengthens the team as a whole, this diversity is often the

source of a cultural quality impact [10].

According to our research it can easily trace its maintainability

and usability with the help of above metrics if it monitors
these properties regularly of any project in agile environment.

V. CONCLUSION AND FUTURE WORK

The limitless writing on programming measurements proposes

various methods for measuring programming without giving a

traceable and significant interpretation to the multi-faceted

thought of value.

Specifically, the Maintainability and Usability Index

experiences extreme constraints with respect to underlying

driver investigation, simplicity of calculation, dialect

autonomy, comprehend capacity, clarify capacity, and control.
A well-picked choice of measures and rules for accumulating

and rating gives a helpful extension between source code

measurements and the quality attributes.

Light-footed is helpful in the event of programming

Maintainability and ease of use as it is conceivable to convey

the Working programming inside the briefest conceivable time

by utilizing the light-footed. And in addition it builds the

consumer loyalty and trust in the individual organization.

This examination utilizes writing to reason about the

relationship between deft improvement techniques and

practicality or convenience. Future work should be possible so
as to accept the discoveries exhibited in this exploration, by

setting up a trial to explicitly test the effect of advancement

strategies on practicality or usability. Prior experimental

examination has not managed expressly with this relationship.

Rather, most experimental exploration has concentrated on

other particular perspectives, for example, software engineer

profitability and blunder check, measured for the most part for

the short term. It is fascinating to quantify the measure of

hours required for keeping up a system created utilizing lithe

techniques when contrasted with a project created utilizing a

customary arrangement driven methodology over quite a

while.
In coordinated, there exists ceaselessly contact with client, so

as indicated by the need of client, the new elements can be

acquainted with fulfill client prerequisite and which will make

us to go ahead the track to decrease the expense and time if

there is any sort of lacking from the arranged cost and

calendar.

VI. REFERENCES

[1] Soumi Ghosh, Sanjay Kumar Dubey, Prof. (Dr.) Ajay

Rana , Comparative Study of the Factors that Affect
Maintainability, International Journal on Computer

Science and Engineering (IJCSE) ISSN: 0975-3397 Vol.

3 No. 12 Dec 2011

[2] L. Trenner and J. Bawa, The Politics of Usability,

Springer-Verlag, London, 1998.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 139-145
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

145

[3] J. E. Gaffney, Jr.:”Metrics in software quality

assurance”. January 1981, ACM 81: Proceeding of the
ACM ’81 conference.

[4] Johan Nisula, Increasing Continuous Refactoring in

Agile Projects using Pair Programming , MARCH 4, 2014

[5] Shrivastava and Jain, "Metrics for Test Case Design in

Test Driven Development", International Journal of

Computer Theory and Engineering, Vol.2, No.6,

December, 2010, Pg: 1793- 8201.

[6] Ken H. Judy, Ilio Krumins-Beens, Great Scrums Need

Great Product Owners: Unbounded Collaboration and

Collective Product Ownership, Proceedings of the 41st

Hawaii International Conference on System Sciences -

2008
[7] L. Williams and R. Kessler, Pair Programming

Illuminated. Reading, Massachusetts: Addison Wesley,

2003.

[8] Beck, Extreme Programming Explained: Embrace

Change, Second ed. Reading, MA: Addison-Wesley,

2005.

[9] Filippo Ricca, Alessandro Marchetto, Marco Torchiano,

On the difficulty of Computing the truck factor, Volume

6759 of the series Lecture Notes in Computer Science pp

337-351, Springer.

[10] Ambler, S. (2008). When IT gets cultural: data
management and agile development. IT Professional,

10(6), 11-14. Retrieved February 7, 2011, from IEEE

Computer Society Digital Library database.

http://link.springer.com/bookseries/558

