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Abstract— This paper presents the state-of-the-art studies 

about Ant Colony Optimization (ACO) algorithm and its 

application to routing protocols. Many attempts have been 

done in order to improve overall performance or on a 

specific problem, as a result several variants of ACO have 

been developed. ACO algorithms are very good candidates 

for solving combinatorial problems since the artificial ants 

build the solution constructively by adding one component 

at a time. The ACO is also suitable for the problems where 

the environment may change dynamically, as ACO 

algorithms can be run continuously and adapted to 

changes in real time. 
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I. INTRODUCTION 

The ACO metaheuristic is a multi-agent framework for 

combinatorial optimization whose main components are: a set 

of ant-like agents, the use of memory and of stochastic 

decisions, and strategies of collective and distributed learning. 

The networks become nowadays more and more complicated, 

with moving nodes, varying loads, etc. The users however 

expect more quality and more services despite the growing 

complexity of the networks. The paper which will be analyzed 

in the following study some adaptations of the Ant Colony 

Optimization to routing protocols, and often compare its 

efficacy to the current routing algorithms. Most of the papers 

see in the ACO a great tool for wireless Ad Hoc networks as it 

has a strong capacity to adapt to changes. However, some new 

algorithms based on ACO are also analyzed for wired 

networks and are giving encouraging results. The comparison 

between ACO and traditional routing algorithms is done with 

analyzing: 

 The routing information; 

 The routing overhead; 

 The adaptively. 

II. ROUTING INFORMATION 

The routing information consists of what is exchanged to get 

to know the architecture of the network, hence forward the 

data packets to the best path. For RIP, the nodes exchange the 

distance-vector information, each node giving to the other 

their neighbours and so on. In OSPF, the nodes tables need on  

 

the link-state information of all the links in every path to 

compute the shortest path. In ACO, the paths from a source to 

a destination are explored independently and in parallel. The 

figure.1 shows a simple configuration of 6 nodes. 

 

 
Figure.1 

For RIP, the nest A depends on routing tables sent by B and F, 

as well as the Food depends on C and E’s routing tables. In 

OSPF, A needs to know all the link-state between itself and 

the food to find the shortest path. In ACO, the paths from the 

source to the food are explored by using n number of ants, the 

ants leaving the nest at the same time and taking a random 

first path. n/2 ants will go through B while the other half will 

take the way to F. The ants which reach the first the food 

indicates which way is the shortest without having to wait for 

the second half of ants to reach. As soon as an ant arrives at a 

node, the corresponding pheromones value for a path is 

updated. Hence, each entry of the pheromone table in a node 

can be updated independently. 

 

III. INFORMATION OVERHEAD 

 

Routing in RIP involves the transmission of routing tables of 

each node to every one of its neighbours. For a large network, 

the routing table of each node, which consists of a list of cost 

vectors to all other nodes, is large. Since each node needs to 

transmit its routing table to all of its neighbours, the routing 

overhead can be very large .In OSPF, routing is achieved by 

having each node transmit a link-state packet (LSP) to every 

other node in a network through a flooding processing. 

Although an LSP, which carries information about the costs to 

all the neighbours of a node, is generally smaller than a 

routing table, the flooding process ensures that every node 

receives a copy of the LSP. Since an LSP from a node can be 
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disseminated via different paths to other nodes, multiple 

identical copies of the same LSP may be transmitted to the 

same node. Routing in ACO is achieved by transmitting ants 

rather than routing tables or by flooding LSPs. Even though it 

is noted that the size of an ant may vary in different 

systems/implementations, depending on their functions and 

applications, in general, the size of ants is relatively small, in 

the order of 6 bytes
i
. This is because ants are generally very 

simple agents. The following table summarizes the differences 

between ACO and traditional routing algorithms. 

 

Table .1 : Differences between ACO and traditional routing 

algorithms. 

 RIP / OSPF ACO algorithm 

Routing 

preference 

Based on 

transmission time 

/ delay 

Based on 

pheromones 

concentration 

Exchange of 

routing 

information 

Routing 

information and 

data packet 

transmitted 

separately 

Can be attached 

to data packets 

Adapting to 

topology 

change 

Transmit routing 

table / Flood 

LSPs at regular 

interval 

Frequent 

transmission of 

ants 

Routing 

overhead 

High Low 

Routing 

update 

Update entire 

routing table 

Update an entry 

in a pheromone 

table 

independently 

 

IV. ADAPTIVITY 

In dynamic networks, transmitting large routing table (in RIP) 

or flooding multiple copies of LSPs (in OSPF) in short or 

regular intervals may incur large routing overhead. However, 

flooding LSPs and transmitting routing table in longer 

intervals may result in slower responses to changes in network 

topology. Since ants are relatively small they can be 

piggybacked in data packets, more frequent transmission of 

ants to provide updates of routing information may be 

possible. Hence, using ACO for routing in dynamic network 

seems to be appropriate. 

Related to the issue of adaptivity is stagnation. Stagnation 

occurs when a network reaches its convergence; an optimal 

path  is chosen by all ants and this recursively increases an 

ant’s preference for . This may lead to: 1) congestion of , 2) 

dramatic reduction of the probability of selecting other paths. 

The two are undesirable for a dynamic network since: 

1)  may become nonoptimal if it is congested; 

2)  may be disconnected due to network failure; 

3) other nonoptimal paths may become optimal due to changes 

in network topology, and iv) new or better paths may be 

discovered. 

Furthermore, Bonabeau et al.
ii
 have pointed out that the 

success of ants in collectively locating the shortest path is only 

statistical. If by chance, many of the ants initially choose a 

non-optimal, other ants are more likely to select leading to 

further reinforcement of the pheromone concentration along 

.This is undesirable for static networks since it is inefficient 

ants always choose a stagnant path that is non-optimal. 

 

V. LIST OF ANTS-BASED ROUTING ALGORITHM 

 

All the previous papers present new routing algorithm based 

on ACO. Here is a list of these algorithms and their field of 

application. 

1. Previous MANET routing protocols 

  DSDV, Destination-Sequenced Distance Vector 

algorithm 

 OLSR, Optimized Link State Routing algorithm 

 AODV, Ad Hoc On Demand Distant Vector 

 DSR, Dynamic Source routing 

 ZRP, Zone Routing Protocol 

 GPSR, Greedy Perimeter Stateless Routing 

 TRP, Terminode Routing Protocol 

VI. RESULTS  

ACO algorithms are complex systems whose behavior is 

determined by the interaction of many components such as 

parameters, macroscopic algorithm components (e.g., the form 

of the probabilistic rule used by ants to build solutions, or the 

type of pheromone update rule used), and problem 

characteristics. Because of this, it is very difficult to predict 

their performance when they are applied to the solution of a 

novel problem. Recently, researchers have started to try to 

understand ACO algorithm behavior by two typical 

approaches of science:  

 

1. The study of the complex system under consideration in 

controlled and simplified experimental conditions, and  

2.  The study of the conditions under which the performance 

of the studied system degrades. Contributions along these two 

lines of research are briefly discussed in the following. 

 Study of ACO in Controlled and Simplified 

Experimental Conditions 

 The analysis of ACO algorithm behavior on simple 

problems is interesting because the behavior of the 

algorithm is not obscured by factors due to the 

complexity of the problem itself.  
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A. Application based ACO in shortest path searching in 

RIP (Routing Information Protocol) in Matlab 

 

Tour Path solved by ACO N=48 

 
Figure.2:  48 Node tour Path 

 

 
Figure.3:  Best Tour Length vs Iteration Time 

 

 

Figure 4 : Tour Length Standard vs Iteration time 

 

 
Figure 5 : Iteration Best Cost Vs Iteration Time 

 

 
Figure6: Average Node Branching Vs Iteration time 

 

VII. CONCLUSION 

This paper tried to cover the state-of-the-art studies about Ant 

Colony Optimization (ACO) algorithm and its application to 

routing protocols. It covers recent thesis reports and introduces 

the latest developed protocols based on ACO. Also, the use of 

prospect theory could be investigated in the real time 

application of ACO in the mobile robot path planning where 

the robot interacts with the environment. 
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