
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

206

MDROID: ANDROID BASED MALWARE
DETECTION USING MCM CLASSIFIER

 Sushma Verma Sunil Kumar Muttoo S.K. Pal

 SAG Department of Computer Science SAG

 DRDO, New Delhi, India FMS, University of Delhi, Delhi, India DRDO, New Delhi, India

Abstract— Malware analysis and detection has become a

prime research area in the case of smartphones,

particularly based on android due to its widespread usage

and increase in the number of malwares involving huge

monetary gains. The exploding number of Android

malware calls for automated analysis of the systems. There

are two common techniques used for detecting malware,

signature based and behaviour based. Signature based

detection uses a sequence of bytes that appear in the

binary code to identify and detect a family of malware.

Behaviour based detection uses features/ artifacts created

by malware during execution for identification. In this

paper, we propose a new malware classification method

based on semantic similarity between two common

subgraphs which is effective for the detection and analysis

of new threats for which signatures are not available, A

behaviour graph is obtained by capturing suspicious API

calls during the execution (in a sandboxed environment).

We use a labelling mechanism for the API calls which will

be regarded as a signature for malicious activity. Selected

features are used to train an MCM classifier. On several

benchmark datasets, the MCM classifier yields detection

accuracy of 97% even with using one-tenth the number of

support vectors used by SVMs.

Keywords— Android Malware Analysis, API calls, Feature

space embedding, Graph kernel, MCM classifier

I. INTRODUCTION

Android is becoming a target to a growing number of attacks

and malicious applications due to its popularity.[40]. The goal

of the attackers is to steal private information, transferring

credit into their ac-count by subscribing to premium services,

unwarranted premium-rate subscription of SMS services and

advanced frauds. Most of the current commercial antivirus for

malware detection are based on Static analysis which fail to

detect zero-day malwares.[42] Signature based technique

treats malwares as sequences of bytes that performs well for

known malwares. Generally malware uses obfuscation as well

as packing techniques to make static analysis harder[8]. Static

analysis based detection methods can be easily by passed by

simple code obfuscation because it ignores programs

functionality such as APIs or function calls.[7] The

obfuscation used by Android applications hides system

activities by calling functions in native libraries written in C /

C++ which is outside the Dalvik /Java runtime library. In

dynamic analysis the source code is executed in a controlled

environment, often called sandbox.[10] Dynamic analysis can

counter obfuscation techniques but can be bypassed by

runtime detection methods. Function-call graph was created

from the disassembled code of program, in which all vertices

represent functions in the program. Each function is a set of

API calls . Edges represent relationship among functions. The

instruction sequences of the malware binary depicting the

structure and the functions are converted into a function-call

graph. Function-call graph[38] abstracts away byte or

instruction level details which act as an signature for the

malware. It can be used to classify the malware variants. We

propose a technique which can identify the semantic similarity

between two malware programs through the use of function-

call graph. We have used a labelling mechanism for the API

calls in the function call graph which will be regarded as a

signature for malicious activity. A Minimal complexity

machine is then used as a classifier to distinguish between

benign and malicious applications. Experimental results show

that the performance of this classifier is better than the

classical SVM in terms of generalization accuracies on a

number of selected features and number of support vectors

required. In an experimental result on a total of 1200 malware

samples, this classification approach is more effective for a

resource constrained device such as smartphones, allowing a

detection of 97 % of the malware families with only 1% false

positives A sketch of our contributions are mentioned below:

– Feature Space Extraction: Features are extracted by

reverse engineering the Android application package file

(APK)[14]. We decompile classes.dex file through dex2jar

and then use jd-gui tool to analyse java source codes of

jar/class file. The components of APK file comprise of

AndroidMan-ifest.xml, Classes.dex, res directory, lib

directory, META-INF directory, and resources. We extract the

feature sets in the form of permissions and various API calls

which help us in detecting the malicious activities using the

Androidmanifest.xml.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

207

– Extracting Call Graph Function And Labelling: The

function call graph for a malware apk is extracted. Each

function call of the application is represented by a node

.Nodes are labeled according to the API calls contained in

their corresponding functions. A hash-value is calculated over

the node and direct neighboring nodes for each node in the

function call graph which is treated as a label for that node.[3]

This neighbourhood hash function also explicitly enumerates

the occurrences of graph substructures.

– Classification Of Malware Using MCM For Accurate

Generalization: A classification module is developed with the

aim of accurately declaring the app as a benign or malicious

one. It achieves this by using a set of known permissions and

API calls which are embedded in a feature space with the goal

of finding a representation that is equivalent to a graph kernel.

MCM classifier algorithm[27] is then used to classify an

application into malicious and benign one. Though it is

difficult to transform graphs to feature vectors without loss of

structutal information contained in the graph, MCM uses a

graph kernel based approach to graph learning while avoiding

the explicit representation of the graph in high dimensional

feature space[31]. It is based on low VC dimension which

leads to good generalization.

Rest of the paper is organized as follows: Section II: Details

the related research work. Section III: Introduces our proposed

technique of detecting Android malware by analyzing function

call graphs and labelling them for forming signatures. Section

IV presents the training and analysis. Section V details the

experiments and the test results followed by detection

performance in section VI and finally the conclusion in section

VII.

II. RELATED RESEARCH WORK

There has been a continuous increase in malware based attacks

in the past decade leading to a significant increase in research

on malware detection for smartphones. SCANDAL[12]

proposed by Kim described a Static Analyzer for detecting

privacy leaks in Android applications based on the optimized

method of advanced permission based detection. RiskRanker

[13] detects zero day malwares by analysing untrusted apps in

the Android market according to potential security risks in a

two order risk analysis framework. DroidAPIMiner[20] and

Drebin[2] classify applications based on static analysis of

features learned from various benign and malicious

applications. In [37], a technique based on machine-learning

algorithms was proposed by zarni for detection of malicious

Android applications in Android. They suggested that the best

representation of executables is the combination of both

permissions and features from the Manifest file. Several

permission features are extracted from various downloaded

applications from Android. The research work focused on

dynamic analysis of Android malware includes TaintDroid

[18] and DroidScope[15] .TaintDroid by W. Enck focuses on

taint analysis and tracks the flow of privacy sensitive data

through third-party applications by leveraging Android’s

virtualized execution environment. DroidScope examines

application at different layers of the platform. Both approaches

provide detailed information about the behavior of

applications but they require too many resources and cannot

be deployed on smartphones directly. In pBMDS[22] a

behavior-based malware detection sys-tem was proposed that

correlates users inputs with system calls related to SMS/MMS

sending to detect anomalous activities. DroidDolphin [23]

uses a combination of static and dynamic analysis and repack-

ages the application by inserting the monitoring code.

However the increasing use of emulator detection technology

in malware evades the dynamic analysis methods.

Another model DroidAnalytics is a signature based analysis

system to automatically collect and analyze android malware

[25]. It uses a multi-level signature algorithm to extract the

malware feature based on their semantic meaning at the

opcode level[34]. It is effective in analyzing repackaged and

metamorphic malwares. Apposcopy [4] aims at describing the

semantics-based malware detection approach which analyses

the program statically and defines a high level language for

specifying signatures of the mal-wares. It takes in account for

the Inter-Component Call Graph of a malware to analyse its

control flow. DroidChameleon[26] evaluated commercial

malwares for their resistance to common obfuscation

techniques. They demonstrated that most of the android anti-

malwares were unable to detect the programs even after small

transformation in the program.

In [28], a technique was proposed based on static and

semantics aware malware detection that attempts to detect

code obfuscation by identifying semantically equivalent

instruction sequences in the malware variants. However

attacks using the equivalent instruction replacement and

reordering are still possible as it requires exact matching

between the template and application instructions.

SmartSiren [24] proposed by Cheng is a collaborative virus

detection and alert system that uses a statistical analysis on the

collected data to detect abnormal communication patterns such

as excessive daily us-age of SMS/MMS messages. The

difficulty of manually creating and updating detection patterns

based on static or dymanic analysis for Android has motivated

the use of machine learning techniques[16]. Several

techniques have been proposed that analyze applications

automatically using machine learning methods [11]. In[19], a

machine-learning based framework CROWDROID was

developed that detects Trojan-like malware on Android

smartphones. It analyzes the number of API invocations and

system call count that has been used by an application during

the execution of an action. However, their detection

methodology can be easily detected by malware as it modifies

the application under analysis.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

208

In MAMA[29] manifest analysis for malware detection in

android is explained . They evaluated the capacity of these two

feature sets viz uses-permissions and uses-features in the

manifest file to detect malware using machine-learning

techniques. Machine learning algorithms has been

considerably used for anomaly detection. [11]. Recently,

Support Vector Machines (SVMs),a supervised learning

algorithm based on the pioneering work of Vapnik [32] and

Joachims [33] on statistical learning theory have been

successfully applied in a number of classification problems.

The emergence of mobile malware that spread via SMS/MMS

messaging and Bluetooth is increasing at an alarming rate

thereby requiring novel detection methods. Though Random

Forest and Support Vector Machines(SVM) are amongst the

most widely used machine learning techniques today for

malware detection. The SVM[30] is used widely with several

variants such as the maximum margin L1 norm SVM , and the

least squares SVM (LSSVM) based on solving the quadratic

programming problem. However, taking into account the

limitations and resource constraints of smartphones, we

present a machine learning based classifier system for the

detec-tion of malware on Android devices based on minimal

complexity machine. We integrate the call graph labelling

approach with a new lightweight classifier for smartphones

that accounts for unknown malware behaviors. The goal of our

work is to develop a malware detection framework for android

that overcomes the limitations of signature-based detection

while addressing resource constraints of smartphones.

III. PROPOSED METHODOLOGY

This section describes the overall methodology.

1. Call graph extraction : The function call graph for

an application will be extracted, which contains information

about the nodes and edges present. Each node will be labelled

according to the instruction they contain and function they

represent. It employs 2 steps:

Step 1 Unpack the malware and disassemble using dex2jar.

Extract API calls and permissions used for the apk using jd-gui

as depicted in fig 1.

Step 2 Extract the function call graph of an android application

with the details of edges and nodes using Gephi as shown in fig

2.

2. Hashing of neighbourhoods and Labelling: For

every node in a graph, there will be a set of edges. A hash

value is generated for each node based upon the labels of nodes

themselves as well as their neighbours. This makes it easy to

include not just the properties of the node but also the

occurrences of substructures traversed

3. Count sensitive Graph Kernel. Neighbourhood hash

values for unrelated nodes can be same leading to accidental

hash collision and resulting in positive semi-definitiveness of

the kernel. In order to re-solve the problem of hash collision,

we use graph kernel based on count of common substructures.

4. Feature space embedding. Features are embedded

using an explicit map inspired by the count sensitive

neighborhood hash graph kernel introduced by Hugo Gascon

[3] Employ an explicit mapping inspired by a linear-time graph

kernel to efficiently map call graphs to an explicit feature

space. The map is designed such that evaluating an inner

product in the feature space is equivalent to computing the

respective graph kernel.

5. Learning and feature analysis. A multiple

complexity machine is then trained to learn a detection model

that is able to classify applications as benign or malicious. The

classifier which takes malicious features embedded in a graph

kernel along with a behaviour signature database detection of

known malwares. The model is then deployed in the handsets

to detect the malware apks.

In an empirical evaluation on a total of 1200 malware samples,

this approach is shown to be highly effective, enabling a

detection of 97% of the malware families with only 1% false

positives. The methodology is used to detect the presence of an

instance of a malware in an android application by considering

its function call pattern [35] and ignoring the syntax of a code

thus making it resilient to various obfuscation techniques.[8] It

aims to find the presence of the malware instance by

concentrating on two generally observed facts:

1. Malicious functionality of an Android program is

present only on a very small number of functions.

2. Number of times, the function with malicious instance

called is much higher than the normal functions. To understand

more about every step, let us talk about each of them in detail.

To understand more about every step, let us talk about each of

them in detail.

A) Call Graph Extraction and Labelling:

We first begin by disassembling the application with the help

of dex2jar and jd-gui [14]. In order to extract the malicious

features[1], we analyse Androidmanifest.xml using Android

asset packaging tool (AAPT). The extracted static features and

dynamic features are represented as strings, which cannot be

fed to classifier directly. For example, a malware sending

premium SMS messages may contain the requested

permissions “SEND_SMS", and the hardware components

“Android.hardware.telephony"

Feature sets are extracted from the AndroidManifest file. The

information stored in this file can be efficiently retrieved using

AAPT to extract the following feature sets:

Feature Set 1: Hardware Components: If an application is

requesting access to specific hardware components like

camera, touchscreen, GPS module, it indicates some harmful

behaviour leading to security breach. An attacker can collect

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

209

location information and send it over the network using GPS

and network access.

Feature Set 2: Permissions: Whenever an application is

installed in Android, it requests the permissions which allows

an application to access related resources. A malicious

application can make use of these permissions to access

resources leading to security implications. For example, most

of the malwares like DroidKungfu, Fakeplayer, Basebridge and

JSMHider sends premium SMS messages using SEND_SMS

permission.

Feature Set 3: App components: An android application

makes use of four different components:

Activities, services, content providers and broadcast

receivers.[20] These components are declared in the manifest.

A malware can make use of these components to perform the

suspicious activity. For example, Basebridge malware activate

three service - AdSmsService, BridgeProvider and

PhoneService to com-municate with control server,also block

messages to do malicious activity without user‘sends

knowledge.

Feature Set 4: Filtered intents: Intents provide interprocess

and intraprocess communication allowing information about

events to be exchanged between different components and

applications. As malware uses these intents for malicious

communication, it is listed in the manifest file. A typical

example is Gin-Master which root devices to escalate

privileges, steal confidential information and send it to a

remote website, plus install applications without user

interaction.

Feature Set 5: Restricted API calls: Use of restricted API calls

for which the required permissions have not been requested

reveals malicious behaviour. Example includes the malware

using root exploits such as GinMaster to bypass the limitations

imposed by the Android platform.

Fig. 1. Disassembling APK

Feature Set 6: Used permissions: We extract the set of API

calls used and the corresponding subset of permissions that are

both requested and actually used. Stowaway, an automated tool

by Felt et. al [9] determines the set of API calls used by an

application and maps to permissions.

Feature Set 7: Suspicious API calls: Certain API calls which

allow access to sensitive data or resources of the smartphone

leading to malicious activity are gathered in a separate feature

set. Some of the examples include API calls for the following:

– Accessing sensitive data, such as getDeviceId() and

getSubscriberId()

– Accessing sensitive data, such as getDeviceId() and

getSubscriberId()

– Network communication, execHttpRequest() and

setWifiEnabled()

– Sending and receiving SMS, such as sendTextMessage()

– Execution of external commands like Runtime.exec()

– Obfuscation, like Cipher.getInstance()

Feature Set 8: Network addresses: Network connections are

used to retrieve commands or filter data such as all IP

addresses, hostnames and URLs collected from the device.

Some of these addresses are involved in botnets and serve as a

very important feature for the detection of a malicious

behaviour.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

210

Fig. 2. Function Call Graph for the malware

We then obtain its function call graph with the details of edges

and nodes.[21] To optimize our frame-work each node is

assigned a label in the form of a short bit sequence of 8 bits.

Mathematically, each graph can be formalized as a tuple of

four factors namely nodes, edges, label set, and the labelling

function. Each graph G can be represented as G = (V,E,L,l)

where V is the finite set of nodes, and each node v2 V is

associated with one of the applications´ functions; E: V1 ! V2

denotes the set of directed edges, where an edge from a node

v1 to a node v2 indicates a call from the function represented

by v1 to the function represented by v2. Finally, L is the

multiple set of labels in the graph and l: V!L is a labelling

function, which assigns a label to each node by considering a

set of features from the Feature set which represents the

function it performs. An application is mapped to a vector

space of malicious features by constructing a vector B(x), such

that for each feature extracted from the application.

We define a label function for a node as:

L(v) = B(x1), B(x2), B(x3), B(x4),…………. B(xn) (1)

n=number of features from the set of Feature Set

described above. (1)

 𝐵(𝑥) = {
1 , 𝑥 ∈ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑒𝑡
0, 𝑥 ∉ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑒𝑡

 (2)

Where xi denotes the presence or absence of that feature set in

a node. Thus we formulate a boolean expression that capture

the functionality of a malware using the feature sets described

above and the dependencies between features. We illustrate

this with an example of a malicious application which sends

premium SMS messages using permissions and hardware

components. A corresponding vector repre-sentation for this

application looks like this:

𝜙(𝑥) =

(

0
0
1
..
.
1
0
1)

 (3)

B) Hashing of Neighbourhoods

A malware performs a list of activities in the course of its

lifecycle that may appear to be harmless when analyzed in

isolation. So a malware cannot be detected by the activity of a

standalone function. Thus we strive to incorporate composition

of a function that not only includes the label of node itself but

also includes labels of neighbouring nodes. We compute a

neighbourhood hash over all of its direct neighbours in the call

graph. We use a procedure inspired by the neighbourhood hash

graph kernel (NHGK) originally proposed by Hido and

Kashima.[36] The NHGK is a so called decomposition kernel

as defined by Haussler [39] because it is a kernel operating

over a large set of sub graphs. Its complexity is fairly low and

expresses the graph in a very readily readable form. Moreover,

it is able to run in linear time in the number of nodes.

The main ideology behind the NHGK is to package the

information of all the neighbouring nodes and then further

incorporating that value with label’s original node to form a

new hash. The algorithm used to calculate hash for a node is

given by

ℎ(𝑣) = 𝑟(𝑙(𝑣))∏{ ∏ 𝑙(𝑧)

𝑍∈𝑉𝑣

 }

Thus h(v) will provide us with a new hash or a new label for a

node which is a function of G = (V; E; L; h(:)) where h(.) is a

hash function which assigns the label L to each node by

considering the function associated with it. The neighbourhood

hash of order p can then be defined recursively as G
p+1

= h(G
p
).

Choosing p larger than one still allows to construct a valid

decomposition kernel [3]. Since incorporating path length of

more than one, there is a risk of overlapping substructures and

thus the values of bits observed might lead to wrong results.

Therefore taking values of hash over the path in call graph of

length of only 1 is a better option than taking it over iterative

sequence of functions in the call graph.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

211

Fig. 3. Algorithm for NHGK

Fig. 4. An example of simple neighborhood hash. (a) A node v having
two neighbours. (b) The procedure to compute the neighborhood hash
for node v using XOR and ROT

C) Graph Kernel

The previous section covered how to construct a function call

graph from a given application and use a labeling function for

the vertices to represent a functionality in the subgraphs

through the use of neighbourhood hash. The next step is to find

the similarity between the graph G(1)representing the malware

and graph G(h) and of the application. So the malware

detection problem transforms to a graph classification problem.

The graph classification problem is linked to the graph

similarity problem are computationally very hard. Traditional

techniques for finding the graph similarity such as the Graph

Edit Distance which measures the number of basic operations

needed to transform one graph into another are NP-

complete[6]. Kernel-based Support Vector Machines[31] have

been proven extremely powerful for classification tasks and

Graph Kernels have emerged as a solution to let the SVM

operate efficiently in the graph space. Graph kernels measure

the similarity between two graphs without an explicit

construction of the feature vectors. In order to use the current

machine learning techniques used to classify graphs G(h) and

G(1), we make use of the graph kernel. The aim is to find the

number of common subgraphs related to the features, we need

to classify the samples as a function of their shared common

substructures. In order to calculate the degree of similarity

between the graphs, the NHGK evaluates the count of common

identical substructures in two graphs, which after hashing gives

the number of shared node labels. Since multiple nodes can

have same label or hash, kernel value can be represented as the

size of the intersection of the multisets Lh and L1 for two

function call graphs Gh and G1 which can be defined as a

function.

 𝐾𝑝(𝐺ℎ, 𝐺1) = |𝐿ℎ ∩ 𝐿1| (4)

To classify the program as malicious and benign, we can

calculate the above function to find the similarities amongst

different set of graphs.

Fig. 5. Graph Kernel

D) Feature Space Embedding

We then input the features in terms of the neighbourhood hash

obtained for the nodes to make use of classifier to detect the

application as malicious or benign. We embed every kernel K

in the feature space whose inner product is equivalent to the

graph kernel. The neighborhood hash graph kernel as

represented in Fig 5, evaluates the count of common identical

substructures in two graphs. Now we create an explicit

representation for the kernel represented by histogram H which

is fed to the classifier. In order to understand the decision of the

classifier malicious and benign, we map the histogram H of

labels represented in binary form in a graph to a vector in the

following way, where M is the maximum value for all the

histograms in the dataset and a is the value of each bin in H.

We first sort the labels and formulate a histrogram H for

multiset Lh as H(Lh) which is of the form (a1, a2, a3, a4,…… ap)

where ai 𝜖 to the set of natural numbers and denotes the

frequency of ith hash in G and p is the number of elements in

Li. Thus the number of shared nodes will be equal the the

minimum of ai amongst the two graphs denoted by the

function.

 𝑆(𝐻1, 𝐻ℎ) = ∑ 𝑚𝑖𝑛(𝑎ℎ
𝑖 , 𝑎𝑖

ℎ)
𝑝
𝑖 (5)

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

212

Fig. 6. Histogram for the frequency of the labels a1, a2 to ap in Graph

(Gh and G1)

This provides an easy way to denote the intersection between

the two multisets. This is known as multiset intersection. This

can be easily observed that function Kp(Gh; G1) is similar to the

function S(H1; Hh). We further use a histogram function (H) for

feature mapping in such a way that S is an inner product in the

induced vector space initially proposed by Barla. For the

purpose, each histogram is mapped to a P-dimensional vector

(H) (Eqn 7). Each bin i of the histogram is associated with M

dimensions in the vector space.

∅(𝐻) = (1, . . . ,1,⏞
𝑎1

0, . . . ,0⏞
𝑀−𝑎1

⏟ …
𝑏𝑖𝑛1

, 1, … ,1,⏞
𝑎𝑁

0, . . . ,0⏞
𝑀−𝑎𝑃

⏟
𝑏𝑖𝑛𝑃

)

Where M is the maximum value amongst all the histogram bins

and P is the number of bins present in the data set. Thus the

number of elements in the vector space is PM.

Suppose the frequency of the given label is ai. These

dimensions are marked as 1 for ai number of terms and 0 for

the rest M - ai terms left. Thus the whole graph is represented

in a vector space in the form of 0‘s and 1‘s which makes it very

easy to analyse and also to recognize the pattern as for each

bin, the sum of elements will be its frequency or height of the

histogram. Thus the 𝜙(H) function represents the similar graph.

Comparing the two graph on the basis of the function 𝜙(H)

will be even more comfortable as shown in Fig 6. Thus the

neighbourhood hash graph kernel can be represented as

𝐾𝑝(𝐺ℎ, 𝐺1) = 𝑆(𝐻ℎ , 𝐻1) = 〈𝜙(𝐻ℎ), 𝜙(𝐻1)〉

One important advantage to represent the program in the form

of (Hh; H1) provides us a way to analyse using MCM. It

provides a method to handle programs with thousands of edges

and nodes.

IV. TRAINING AND FEATURE ANALYSIS

While Support Vector Machine produces state of the art classi-

-fier, VC dimension of a SVM can be unbounded. The VC

dimension measures the complexity of a learning machine, and

a low VC dimension leads to good generalization. So we make

use of Minimal Complexity Machine proposed by Jaydeva [27]

to learn a hyperplane classifier by minimizing an exact, or

bound on its VC dimension. It considers each data point as a

vector in space and uses the principles of regressions to

categorize them into two. There exists a hyperplane that can

classify these points with zero error.[27] To serve our

objective, we implement the methods of Graph Kernels, which

is a powerful machine learning framework to provide inner-

product in a graph, and also find similarities amongst the

various graphical structures. Addition of machine learning

classifier will add self-efficacy to this system making it, self-

reliant. Graph kernel will provide a platform for our classifier

to work in a graphical space and MCM can be used to classify

the program as malicious and benign on the basis of results

obtained.

V. EXPERIMENTS, DATA SETS AND RESULTS

For all experiments, we consider a dataset of real Android
applications [5] and real malware acquired from the Google
Play Store, contagiominidump[43], virus total and various
other sources, such as An-droid websites, malware forums ,
security blogs and Android Malware Genome Project[44]. We
use Virus Total[41] to determine malicious and benign
applications. We ensure that the applications are accurately
split into benign and malicious samples by flagging the
application as malicious even if one of the ten scanners falsely
labels a benign application as malicious. We have used 20
malware families in our dataset as listed in the Table 1.

Table 1

List of Malware Samples and their Detection accuracy

VI. DETECTION PERFORMANCE

MDROID is able to reliably detect all families with an average
accuracy of 97% and a false-positive rate of 1%. In particular,
all families show a detection rate of more than 90%. Its
detection rate depends on the number of samples taken for
training the detection model. We have trained our model on the
samples taken from a set of known malware families listed in
the table above. The features extracted from the set of known
malware families are examined and the feaures with the highest

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

213

contribution to the classification decision are averaged over all
members of known families and then used for the detection of
the unknown malware. The kernel trick of MCM allows the
data instances to be projected into a higher dimensional space
and find a hyperplane in that space which is same as a non-
linear hyperplane in the original d-dimensional space. Our
results show a significant improvement over other existing
machine learning methods. The results of the experiments are
shown in Fig 7.

Fig. 7. Detection Accuracy of Malware Families

VII. CONCLUSION

Security attacks on smart phones are become smarter and

devastating as more people are switching to smart phones for

their serious applications. With an exponential growth in

unknown malware, there is a need to establish malware

detection methods that are both robust and efficient. As the

vast majority of mobile malware targets the Android platform,

this work focuses on structural detection of Android malware.

However, the method presented can be adapted to other

platforms with minor changes in the feature sets extracted.

Our method employs static analysis approach for extracting

the feature set and an explicit feature map using a labelling

function inspired by the neighbourhood hash graph kernel to

represent malicious applications based on their function call

graphs. We have presented a machine learning approach based

on hyper plane classifier MCM, especially suitable for

resource constrained devices such as smartphones. We have

conducted experiments on various malware datasets and

shown that the trained classifier outperforms classical SVM in

terms of generalization accuracies on selected datasets. Future

work would investigate the classifier performance with larger

sample sets as more malware samples are discovered in the

wild. Further studies would also investigate performance

improvement via prior incorporation of expert knowledge for

feature selection.

VIII. REFERENCE

[1] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Ainuddin

Wahid Abdul Wahab, A review on feature selection in

mobile malware detection, Digital Investigation: The

International Journal of Digital Forensics & Incident

Response, Volume 13, Issue C, June 2015, pp.22-37.

[2] Daniel Arp, Konrad Rieck, et al.Drebin: Efficient and

Explainable Detection of Android Malware in Your

Pocket, 21th Annual Network and Distributed System

Security Symposium (NDSS), February 2014.

[3] Hugo Gascon , Fabian Yamaguchi , Daniel Arp , Konrad

Rieck, Structural detection of android malware using

embedded call graphs, Proceedings of the 2013 ACM

workshop on Artificial intelligence and security,

November 04-04, 2013, Berlin, Germany

[4] Feng, Yu, et al. Apposcopy: Semantics-based detection of

android malware through static analysis. Proceedings of

the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering. ACM, 2014.

[5] CuckooDroid - http://cuckoo-droid.readthedocs.org/

[6] Kinable, Joris, and Orestis Kostakis. Malware

classification based on call graph clustering. Journal in

computer virology 7.4 (2011): 233-245.

[7] Moser, A., Kruegel, C., Kirda, E. (2007,

December).Limits of static analysis for malware

detection. In Computer security applications conference,

2007. ACSAC 2007. Twenty-third annual (pp. 421-430).

IEEE.

[8] You, I., Yim, K. (2010, November). Malware obfuscation

techniques: A brief survey. In 2010 International

conference on broadband, wireless computing,

communication and applications (pp. 297-300). IEEE.

[9] P. Felt, E. Chin, S. Hanna, D. Song, and D. Wag- ner.

Android permissions demystied. In Proc. of ACM

Conference on Computer and Communications Security

(CCS), pages 627 638, 2011.

[10] Bose, X. Hu, K. G. Shin, and T. Park, Behavioral

detection of malware on mobile handsets. Proc. 6th

international Conference on mobile systems, applications

and services. Breckenridge, CO, USA: ACM, 2008, pp.

225-238. (EISIC). IEEE; 2012.

[11] Sahs, Justin, and Latifur Khan. A machine learning

approach to android malware detection. Intelligence and

Security Informatics Conference (EISIC), 2012 European.

IEEE, 2012.

[12] J. Kim, Y. Yoon, K. Yi, and J. Shin, SCANDAL: Static

analyzer for detecting privacy leaks in Android

applications. Security Informatics Conference, 2012

Available at http://mostconf.org/2012/papers/26.pdf

[13] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.

Riskranker: scalable and accurate zero-day android

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

214

malware de-tection.In Proceedings of the 10th

international conference on Mobile systems, applications,

and services, MobiSys 12, 2012.

[14] Y. Zhou and X. Jiang. Dissecting Android malware:

Characterization and evolution. In Proc. of IEEE

Symposium on Security and Privacy, pages 95–109, 2012.

[15] L.-K. et al. Droidscope: Seamlessly reconstructing os and

dalvik semantic views for dynamic Android malware

analysis.In Proc of USENIX Security Symposium, 2012.

[16] Sahs J, Khan L. A machine learning approach to Android

malware detection. In: European Intelligence and Security

Informatics Conference.

[17] T. Isohara, K. Takemori, and A. Kubota,Kernel-based

behavior analysis for android malware detection pp.

1011–1015, 2011.

[18] W. Enck, et al. Taintdroid: An information-flow tracking

system for realtime privacy monitoring on smartphones.

In Proc. of USENIX Symposium on Operating Systems

Design and Implementation (OSDI), pages 393–407, 2010

[19] Burguera, U. Zurutuza, S. and Nadjm-Tehrani,

Crowdroid: behavior-based malware detection system for

Android Proc. 1st ACM Workshop on Security and

Privacy in Smartphones and Mobile devices (New York,

NY, USA, 2011), SPSM 11, ACM, pp. 15–26.

[20] Aafer, Yousra, Wenliang Du, and Heng Yin.

DroidAPIMiner: Mining API-level features for robust

malware detection in android." Security and Privacy in

Communication Networks. Springer International

Publishing, 2013. 86-103.

[21] Martinelli, Fabio, Andrea Saracino, and Daniele

Sgandurra. Classifying Android Malware through

Subgraph Mining. Revised Selected Papers of the 8th

International Workshop on Data Privacy Management and

Autonomous Spontaneous Security-Volume 8247.

Springer-Verlag New York, Inc., 2013.

[22] Xie, Liang, et al. pBMDS: a behavior-based malware

detection system for cellphone devices. Proceedings of

the third ACM conference on Wireless network security.

ACM, 2010.

[23] Wu, Wen-Chieh, and Shih-Hao Hung. DroidDolphin: a

dynamic Android malware detection framework using big

data and machine learning. Proceedings of the 2014

Conference on Research in Adaptive and Convergent

Systems. ACM, 2014.

[24] Cheng, Jerry, et al. Smartsiren: virus detection and alert

for smartphones. Proceedings of the 5th international

conference on Mobile systems, applications and services.

ACM, 2007.

[25] Zheng, M., Sun, M., & Lui, J. (2013, July). Droid

analytics: A signature based analytic system to collect,

extract, analyze and associate android malware. In Trust,

Security and Privacy in Computing and Communications

(TrustCom), 2013 12th IEEE International Conference on

(pp. 163-171). IEEE.

[26] Rastogi, Vaibhav, Yan Chen, and Xuxian Jiang.

Droidchameleon: evaluating android anti-malware against

transformation attacks. Proceedings of the 8th ACM

SIGSAC symposium on Information, computer and

communications security. ACM, 2013.

[27] Jayadeva. Learning a hyperplane classifier by minimizing

an exact bound on the VC dimensioni.

NEUROCOMPUTING 149 (2015): 683-689.

[28] Christodorescu, M., Jha, S., Seshia, S., Song, D., &

Bryant, R. E. (2005, May). Semantics-aware malware

detection. In Security and Privacy, 2005 IEEE

Symposium on (pp. 32-46). IEEE.

[29] Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X.,

Nieves, J., Bringas, P. G., & Alvarez Maranon, G. (2013).

MAMA: manifest analysis for malware detection in

android Cybernetics and Systems, pg 469-488.

[30] Wagner, Cynthia, et al.Malware analysis with graph

kernels and support vector machines. Malicious and

Unwanted Software (MALWARE), 2009 4th

International Conference on. IEEE, 2009.

[31] Cristianini, Nello, and John Shawe-Taylor. An

introduction to support vector machines and other kernel-

based learning methods. Cambridge university press,

2000.

[32] Vapnik, Vladimir N. An overview of statistical learning

theory. Neural Networks, IEEE Transactions on 10.5

(1999): 988-999.

[33] Joachims, Thorsten. Text categorization with support

vector machines: Learning with many relevant features.

Springer Berlin Heidelberg, 1998.

[34] Santos, I., Brezo, F., Nieves, J., Penya, Y. K., Sanz, B.,

Laorden, C., & Bringas, P. G. (2010). Idea: Opcode-

sequence-based malware detection. In Engineering Secure

Software and Systems (pp. 35-43). Springer Berlin

Heidelberg.

[35] Lee, J., Jeong, K., & Lee, H. (2010, March). Detecting

metamorphic malwares using code graphs. In Proceedings

of the 2010 ACM symposium on applied computing (pp.

1970-1977). ACM.
´

[36] Hido, Shohei, and Hisashi Kashima.A linear-time graph

kernel. Data Mining, 2009. ICDM09. Ninth IEEE

International Conference on. IEEE, 2009.

[37] Aung, Zarni, and Win Zaw. Permission-based Android

malware detection.International Journal of Scientific and

Technol-ogy Research 2.3 (2013): 228-234.

[38] Shang, Zeng,Xu. Detecting Malware Variants thru

Function Call Graph Similarity, 5th International

Conference on Ma-licious and Unwanted Software, 2010

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 206-215
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

215

[39] D. Haussler. Convolution kernels on discrete structures.

Technical Report UCSC-CRL-99-10, UC Santa Cruz,

July 1999. [40] RiskIQ, Feb 19 2014, Research Also

Shows Steady and Significant Drop in Number of

Malicious Apps Being Removed in Past Three Years.

Available:

http://www.riskiq.com/company/pressreleases/riskiqrepor

ts-malicious-mobile-apps-google-

[40] play-have-spiked-nearly-400

[41] Online Available at, http://virustotal.com

[42] Trendmicro mobile security. Available at

http://www.trendmicro.com/us/enterprise/productsecurity/

mobile-security/.

[43] M. Parkour. Contagio Mobile. Mobile Malware Mini

Dump. http://contagiominidump.blogspot.com [44]

Genome Project. Android malware samples.

http://www.malgenomeproject.org.

