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Abstract— In this paper, an analysis of heat source on MHD flow 

and heat transfer to a laminar liquid film form an impervious 

stretching sheet. The basic running equations are in the form of 

partial differential equations. Using similarity transformation, 

these equations are converted to non-linear ordinary differential 

equations. The approximated analytical solutions of the 

dimensionless velocity and dimensionless temperature are 

derived by using the New Homotopy analysis method. The 

graphical representations of axial flow and temperature profiles 

are depicted with the help of magnetic parameter, unsteadiness 

parameter, dimensionless film thickness and prandtl number. 

This method can be easily extended to solve other non-linear and 

boundary value problems in other MHD flows. 

Keywords— Unsteady stretching surface; Similarity 

transformation; Magnetic parameter; New Homotopy analysis 

method. 

I.  INTRODUCTION 

The analysis of flow a thin liquid film had interested to study 

of number of researches because of its suitable applications in 

science and technology. Other applications such as 

aerodynamic extrusion of plastic sheets and fibers, drawing, 

annealing and thinning of copper wire and glass blowing. The 

problem of extrusion of thin surface layers needs attention to 

income some idea for controlling the coating product 

efficiently. We studied the analytical boundary layer flow over 

a stretching sheet by Crane [1]. We have referred to the three 

dimensional flow due to a stretching surface and that due to a 

stretching surface in a rotating fluid by Wang [2]. We 

analyzed the heat transfer in a viscoelastic boundary layer 

flow over a stretching sheet with viscous dissipation and non-

uniform heat source by Abel et al [3]. 

In study of Wang [4] to the case of finite fluid domain are 

extended by several authors by Usha et al [5]-[8] for fluids of 

both Newtonian and non-Newtonian kinds using various and 

thermal boundary conditions. There are extensive works in 

literature concerning the production of thin fluid film either on 

a vertical wall achieved through the action of gravity or that 

over a rotating disc achieved through the action of centrifugal 

forces. The thin liquid film flow over a rotating horizontal disk 

by Dandapat and Ray[9].Easily, the unsteady MHD film over 

a rotating disk by Kumari and Nath[10].The viscoelastic fluid 

flow and heat transfer over a stretching sheet under the effects 

of a non-uniform heat source, viscous dissipation and thermal 

radiation by Cortell[11] 

Most of the aforementioned studies have neglected the 

combined effect of non-uniform heat source/sink and magnetic 

field on the heat transfer which is important in view point of 

desired properties of the outcome. In the present study we 

include the same for heat transfer analysis in a thin liquid film 

from an unsteady stretching sheet. 

 

II. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

In this section we consider a thin elastic sheet which emerges 

from a narrow slit at the origin of a Cartesian co-ordinate 

system for investigations in Fig.1.The continuous sheet at 

0y  is parallel with the x-axis and moves in its own plane 

with the velocity as follows 
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Here b  and   are both positive constants with dimensions 

per time. The surface temperature sT of the stretching sheet is 

assumed to vary with the distance x from the slit as  
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Here 0T  denotes as the temperature at the slit and refT refers 

to a constant reference temperature such that 00 TTref  . 

The equation  tv
bx

1

2
 can be recognized as the local 

Reynolds number based on the surface velocityU . From 

eqn.(1) for the velocity of the sheet )t,x(U  reflects that the 
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elastic sheet which is fixed at the origin is stretched by 

applying a force in the positive x-direction and the effective 

stretching rate 
)t(

b
1

 increase with time as 10   .  

The analysis with the same expression for the surface 

temperature )t,x(Ts  given eqn.(2) shows  a situations in 

which the sheet temperature decreases from 0T  at the slit in 

proportion to 
2x  and such that the amount of temperature 

reduction along the sheet increases with time. The applied 

transverse magnetic field is assumed to be of variable kind and 

is chosen in its special form as below  

    21

0 1


 tBt,xB                                          (3) 

The particular form of the expressions for )t,x(T),t,x(U s  

and )t,x(B  are chosen so as to facilitate the construction of a 

new similarity transformation which enables in transforming 

the governing partial differential equations of momentum and 

heat transport into a set of non-linear ordinary differential 

equations. 

 

 
Fig.1:  Physical representation of a liquid film on an unsteady 

stretching sheet. 

 

Let us consider a thin elastic liquid film of uniform thickness 

)t(h  lying on the horizontal stretching sheet. The x-axis is 

chosen in the direction along which the sheet is set to motion 

and the y-axis is taken perpendicular to it. The fluid motion 

within the film is primarily caused solely by stretching of the 

sheet. The sheet is stretched by the action of two equal and 

opposite forces along x-axis. The sheet is assumed to have 

velocity U as defined in eqn.(1) and the flow field is exposed 

to the influence of an external transverse magnetic field of 

strength B as defined in eqn.(3). We have neglected the effect 

of latent heat due to evaporation by assuming the liquid to be 

non-volatile. Further the buoyancy is neglected due to the 

relatively thin liquid film, but it is not so thin that 

intermolecular forces come into play. The velocity and 

temperature fields of the liquid film obey the following 

boundary layer equations 
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The non -uniform heat source/sink is modeled as  

 
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xv
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00                            (7) 

Here *A  and *B  are the coefficients of space and 

temperature dependent heat source/sink respectively. In this 

case 00  ** B,A  corresponds to internal heat generation and 

that 00  ** B,A  corresponds to internal heat absorption. 

The pressure in the surrounding gas phase is assumed to be 

uniform and the gravity force gives rise to a hydrostatic 

pressure variation in the liquid film. In order to justify the 

boundary layer approximation, the length scale in the primary 

flow direction must be significantly larger than the length 

scale in the cross stream direction. We choose the 

representative measure of the film thickness to be 2
1

)b/v(  so 

that the scale ratio is large enough. That is  

1
2

1 
)b/v(

x .  This choice of length scale enables us to 

employ the boundary layer approximations. Further it is 

assumed that the induced magnetic field is negligibly small. 

The boundary conditions are given below 
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At this juncture we make a note that the mathematical problem 

is implicitly formulated only for 0x . Further it is assumed 

that the surface of the planar liquid film is smooth so as to 

avoid the complications due to surface waves. The influence 

of interfacial shear due to the quiescent atmosphere, in other 

words the effect of surface tension, is assumed to be 

negligible. The viscous shear stress )yu(u  and the heat 

flux )yT(kq   vanish at the adiabatic free surface 

(at hy  ). 

 

Consider dimensionless variable f  and  , the similarity 

variable   as 
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The physical stream function )t,y,x( automatically assures 

mass conversion given in eqn.(4). The velocity components as 

follows  
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The mathematical problem defined in eqn. (4)-(6),(8) and (9) 

transforms exactly into a set of differential equations and their 

boundary conditions: 
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Where ,bS  the dimensionless measure of the 

unsteadiness and the prime is indicates differentiation with 

respect to  . Further   represents the value of the similarity 

variable    at the free surface so that eqn.(13) below 
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 But   is an unknown constant, which should be determined 

as an integral part of the boundary value problem. The rate at 

which film thickness varies can be obtained differentiating 

eqn.(21) 

With respect to t, in the form  

21

12
)

)t(b

v
(

dt

dh






            (22) 

Therefore the kinematic constraint at )t(hy   given by eqn. 

(10) transforms into the free surface condition (22). It is 

noteworthy that the momentum boundary layer defined by 

eqn.(16) subject to the relevant boundary conditions (18)-(20) 

is decoupled from the thermal field; on the other hand the 

temperature field )( is coupled with the velocity field 

)(f  . Since the sheet is stretched horizontally the convection 

least affects the flow and hence there is a one-way coupling of 

velocity and thermal fields. 

The local skin friction coefficient, which is of practical 

importance, is as follows 
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and the heat transfer between the surface and the fluid 

convention ally expressed in dimensionless form as a local 

Nusselt number is given by  
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Here v/UxRex   is the local Reynolds number and refT  

represents the same reference temperature as in eqn.(2). We 

find the solution of the boundary value problem (16)-(20). 

 

III. SOLUTION OF THE PROBLEMS USING THE NEW 

HOMOTOPY ANALYSIS METHOD 

Homotopy analysis method (HAM) is a non-perturbative 

analytical method for obtaining series solutions to nonlinear 

equations and has been successfully applied to numerous 

problems in science and engineering [11-33]. In comparison 

with other perturbative and non-perturbative analytical 

methods, HAM offers the ability to adjust and control the 

convergence of a solution via the so-called convergence-

control parameter. Because of this, HAM has proved to be the 

most effective method for obtaining analytical solutions to 

highly non-linear differential equations. Previous applications 

of HAM have mainly focused on non-linear differential 

equations in which the non-linearity is a polynomial in terms 

of the unknown function and its derivatives. As seen in (1), the 

non-linearity present in electro hydrodynamic flow takes the 

form of a rational function, and thus, poses a greater challenge 

with respect to finding approximate solutions analytically. Our 

results show that even in this case, HAM yields excellent 

results. 

 Liao [12-20] proposed a powerful analytical method for non-

linear problems, namely the Homotopy analysis method. This 

method provides an analytical solution in terms of an infinite 

power series. However, there is a practical need to evaluate 

this solution and to obtain numerical values from the infinite 

power series. In order to investigate the accuracy of the 

Homotopy analysis method (HAM) solution with a finite 

number of terms, the system of differential equations were 

solved. The Homotopy analysis method is a good technique 

comparing to another perturbation method. The Homotopy 

analysis method contains the auxiliary parameter h , which 

provides us with a simple way to adjust and control the 

convergence region of solution series.  Using this method, we 

can obtain the following solution to (1) and (2) (see Appendix 

B). 

The approximate analytical solution of the equations (1) and 

(2) using HAM is given by 
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IV. RESULTS AND DISCUSSION 

In this section the effects of physical parameters including 

magnetic parameter Mn , unsteadiness parameters S , prandtl 

number pr , coefficient of space *A , coefficient of 

temperature *B , dimensionless film thickness   will be 

presented. Fig.1 show that the physical model of a liquid film 

on an elastic sheet. Fig.2 and 3 illustrates the differential axial 

flow ))(f(   versus dimensionless similarity variable )( . 

From Fig.2, we infer that the dimensionless axial velocity 

decreases, when the magnetic parameter increases in some 

fixed values of other dimensionless parameter ,S .From 

Fig.3, represents the dimensionless axial velocity, when the 

magnetic parameter increases for some fixed values of other 

dimensionless parameter .,S  Fig. 4 and 5 illustrates the 

dimensionless temperature ))((   versus dimensionless 

similarity variable ).( From Fig.4, shows that the 

dimensionless temperature increases, when magnetic 

parameter increases in some fixed value of other 

dimensionless parameters .pr,B,A,,S **  From Fig.5, we 

evident that when the magnetic parameter increases, the 

corresponding dimensionless temperature decreases in some 

fixed value of other dimensionless parameters 

.pr,B,A,,S **

 

Fig. 6 and 7 shows the dimensionless temperature ))((   

with respect to the dimensionless similarity variable ).(  

From Fig.6, it is noted that when the value of coefficient of 

space increases, the dimensionless temperature decreases in 

some fixed value of other parameters .pr,B,Mn,,S *  From 

Fig. 7, we depicts that the dimensionless temperature 

increases, when the coefficient of space increases for some 

fixed value of other dimensionless parameters .pr,B,Mn,,S *   

Fig. 8 and 9 describes that the dimensionless temperature 

))((   versus dimensionless similarity variable ).(  From 

Fig.8, we demonstrate that when the coefficient of temperature 

increases, the corresponding dimensionless temperature 

increases in some fixed value of other dimensionless 

parameters .pr,Mn,A,,S *   From Fig.9, we observed that the 

dimensionless temperature decreases when the coefficient of 

temperature increases in some fixed value of parameter 

.pr,Mn,A,,S *  

From Fig. 10, represents the dimensionless stress parameter 

))(f( 0  w.r.to the magnetic parameter )Mn( . This Fig. 

clearly demonstrates that the increase in the value of magnetic 

parameter produces decrease in the values of the 

dimensionless stress parameter for some fixed value of 

parameters .,S   From Fig. 11, shows that the dimensionless 

temperature gradient ))(( 0  versus the magnetic 

parameter )Mn( . It observer that increases in the values of 

dimensionless temperature gradient, when the value of 

magnetic parameter decreases in some fixed value of other 

parameters   .pr,B,A,,S **  

From Fig. 12, we infer that the dimensionless temperature 

gradient ))(( 0  and coefficient of space )A( * . It describes 

that dimensionless temperature gradient decrease when 

coefficient of space increases in some fixed value of 

parameters From Fig. 13, we noted that the dimensionless 

temperature gradient ))(( 0  and coefficient of temperature 

)B( * . It represents that when the coefficient of temperature 

increases, the corresponding values of dimensionless 

temperature gradient decreases for some fixed parameters. 
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Fig.2: Dimensionless axial flow ))(f(  versus dimensionless 

similarity variable )( . The curves are plotted for various 

values of the dimensionless film thickness )( , magnetic 

parameter )Mn( and some fixed value of the other parameter 

S  using the eqn.(25) when 22090.h  . 

 
Fig.3: Dimensionless axial flow ))(f(  versus 

dimensionless similarity variable )( . The curves are plotted 

for various values of the dimensionless film thickness )( , 

magnetic parameter )Mn( and some fixed value of the other 

parameter S  using the eqn.(25) when 230.h  . 

 

 

 

 

Fig.4: Dimensionless temperature    versus dimensionless 

similarity variable )( . The curves are plotted for various 

values of the dimensionless film thickness )( , magnetic 

parameter )Mn( and some fixed value of the other parameter 

** B,A,pr,S  using the eqn.(26) when 30250.h  . 

 

Fig.5: Dimensionless temperature    versus dimensionless 

similarity variable )( . The curves are plotted for various 

values of the dimensionless film thickness )( , magnetic 

parameter )Mn( and some fixed value of the other parameter 

** B,A,pr,S  using the eqn.(26) when 30250.h  . 
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Fig.6: Dimensionless temperature    versus dimensionless 

similarity variable )( . The curves are plotted for various 

values of the coefficient of space )A( *
and some fixed value of 

the other parameter ,Mn,B,pr,S *
 using the eqn.(26) when 

950.h  . 

 

Fig.7: Dimensionless temperature    versus dimensionless 

similarity variable )( . The curves are plotted for various 

values of the coefficient of space )A( * and some fixed value of 

the other parameter ,Mn,B,pr,S *  using the eqn.(26) when 

950.h  . 

 

Fig.8: Dimensionless temperature    versus dimensionless 

similarity variable
)(

. The curves are plotted for various 

values of the coefficient of temperature )B( * and some fixed 

value of the other parameter ,Mn,A,pr,S *  using the 

eqn.(26) when 140.h  . 

 

Fig.9: Dimensionless temperature    versus dimensionless 

similarity variable )( . The curves are plotted for various 

values of the coefficient of temperature )B( * and some fixed 

value of the other parameter ,Mn,A,pr,S *  using the 

eqn.(26) when 80330.h  . 
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Fig.10: Dimensionless stress parameter ))(f( 0 versus 

magnetic parameter )Mn( . The curves are plotted for various 

values of the coefficient of space )S( and some fixed value of 

the other parameter ,pr  using the eqn.(25) when 750.h  . 

 

Fig.11: Dimensionless temperature gradient ))(( 0 versus 

magnetic parameter )Mn( . The curves are plotted for various 

values of the coefficient of space )S( and some fixed value of 

the other parameter ** B,A,,pr   using the eqn.(26) when 

650.h  . 

 

Fig.12: Dimensionless temperature gradient ))(( 0 versus 

coefficient of space )A( * . The curves are plotted for various 

values of the coefficient of space )S( and some fixed value of 

the other parameter *B,,pr   using the eqn.(26) when 

2520.h  . 

 

Fig.13: Dimensionless temperature gradient ))(( 0 versus 

coefficient of temperature )B( * . The curves are plotted for 

various values of the coefficient of space )S( and some fixed 
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value of the other parameter *A,,pr   using the eqn.(26) 

when 8850.h  . 

V. CONCLUSION 

This paper investigates the MHD boundary layer flow and heat 

transfer of a laminar liquid film over an unsteady stretching 

sheet. The analytical expressions of the dimensionless axial 

flow and dimensionless temperature are obtained by using New 

Homotopy analysis method. The effect of magnetic field and 

non-uniform source/sink in presented and magnetic field has a 

great effect in controlling the flow and heat transfer. In New 

Homotopy analysis method, we can choose h  approximate 

way which controls the convergence of the series. This method 

can be easily extended to solve the non-linear boundary layer 

problems for MHD fluid flow in engineering field. 
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APPENDIX A:  BASIC CONCEPT OF HAM 

Consider the following differential equation: 

0)]t(u[N            (A.1) 

Where Ν is a nonlinear operator, t denote an independent 
variable, u(t) is an unknown function. For simplicity, we ignore 
all boundary or initial conditions, which can be treated in the 
similar way. By means of generalizing the conventional 
Homotopy method, Liao (2012) constructed the so-called zero-
order deformation equation as: 

)]p;t([N)t(phH)]t(u)p;t([L)p(   01        (A.2) 

where p  [0,1] is the embedding parameter, h ≠ 0 is a nonzero 
auxiliary parameter, H(t) ≠ 0 is an auxiliary function, L an 

auxiliary linear operator, 0u  (t)  is an initial guess of u(t), 

)p:t(  is an unknown function. It is important to note that 

one has great freedom to choose auxiliary unknowns in HAM. 
Obviously, when 0p  and 1p , it holds: 

)t(u);t( 00  and )t(u);t( 1         (A.3) 

respectively. Thus, as p increases from 0 to 1, the solution 

)p;t( varies from the initial guess )t(u0  to the solution u 

(t). Expanding )p;t(  in Taylor series with respect to p, we 

have: 








1

0

m

m
m p)t(u)t(u)p;t(    (A.4) 

Where 

0

1





 pm

m

m
p

)p;t(

!m
)t(u


   (A.5) 

If the auxiliary linear operator, the initial guess, the auxiliary 

parameter h, and the auxiliary function are so properly chosen, 

the series (A.4) converges at p =1 then we have: 








1

0

m

m )t(u)t(u)t(u .          (A.6) 

Differentiating (A.2) for m times with respect to the embedding 

parameter p, and then setting p = 0 and finally dividing them 

by m!, we will have the so-called mth -order deformation 

equation as: 

)u()t(hH]uu[L mmmmm 11 



           (A.7) 

where 
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And 










 1   1,

,1  0

.m

m,
m           (A.9) 

Applying 1L  on both side of eqn. (A7), we get 

)]u()t(H[hL)t(u)t(u mmmmm






  1
1

1                 (A10)  

In this way, it is easily to obtain mu  for ,m 1  at thM  order, 

we have 






M

m

m )t(u)t(u

0

                                                               (A.11) 

When M , we get an accurate approximation of the 

original eqn.(A.1). For the convergence of the above method 

we refer the reader to Liao [20]. If an eqn.(A.1) admits unique 

solution, then this method will produce the unique solution. 

 

APPENDIX B 

APPROXIMATE ANALYTICAL EXPRESSIONS OF 
THE NON-LINEAR DIFFERENTIAL EQNS. (16)-(20) 

USING THE NEW HOMOTOPY ANALYSIS METHOD 

In this appendix,the eqns. (16) and (17) can be written in the 

following form 

 
Mnffff)f()ff(S  2

2
        (B.1) 
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S
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** 
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
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
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
 23

2                       (B.2) 

The eqns. (B.1) and (B .2) can be written as 

0
2

2   
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We construct the Homotopy for the eqn. (B.3) and (B.4)  are as 
follows: 



                   International Journal of Engineering Applied Sciences and Technology, 2016    
                                        Vol. 1, Issue 7, ISSN No. 2455-2143, Pages 26-36 
                          Published Online May - June 2016 in IJEAST (http://www.ijeast.com) 
 

35 

 

0

0

2
1

2

2

2

3

3

3

3








































































)(
d

df
f

d

df

d

fd

d

df
S

d

df
Mn

d

fd

hp
d

fd
)p(












       (B.5) 

0

23
2

1

2

2

2

2



































































f
d

d

d

df

d

dS
pr

B
d

df
A

d

d

hp

f
d

d
pr

d

d
)p(

**


























       (B.6) 

The approximate solution of the eqn. (B.5) and (B.6) are as 

follows: 

...fppfff  2
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The initial approximations are as follows: 
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Substituting the eqn. (B.7) into the eqn. (B.5) we get 
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Comparing the coefficients of like powers of p in eqn. (B.12), 

we get the following eqn. 
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Substituting the eqn. (B.8) into the eqn. (B.6) we get 
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Comparing the coefficients of like powers of p in eqn. (B.15), 

we get the following eqn. 
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Solving the eqns. (B.13), (B.14) and using boundary conditions 

(B.9) ,(B.9(a)) and (B.11), we obtained the following results: 
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Solving the eqns. (B.16), (B.17) and using boundary conditions 

(B.9) and (B.9(a)) we obtained the following results: 
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According to the Homotopy analysis method we have 
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Using the eqns. (B.18) - (B.21) in (B.18) – (B.19) respectively. 

We obtain the solution in the text eqns. (25)-(26). 

 

APPENDIX C:  NOMENCLATURE 

    

Symbol Meaning 
  Dimensionless similarity variable 

f  Dimensionless velocity 

f  Dimensionless axial flow 

  Dimensionless temperature 

S  Unsteadiness parameter 

Mn  Magnetic parameter 
*A  Coefficient of space 

*B  Coefficient of temperature 

  Dimensionless film thickness 

pr  Prandtl number 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


