
International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 299-302
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

299

DESIGNING ISSUES IN PYTHON

LANGUAGE - A REVIEW
Shally Agrawal

Department of IT

IET-DAVV, Indore (M.P)

Abstract-A data scientist needs data which is to

be manipulated for visualizing results .For

manipulation there already exists numerous

methods which can be used, there is no need to

reproduce those methods again. Python is able

to draw a curve, smooth a signal, do a Fourier

transform in a few minutes. For the easy

communication of results, the language should

contain as few syntax symbols as possible that

would divert the reader from the mathematical

or scientific understanding of the code. Also for

efficient usage, a single environment is required

as downloading different software make the job

tedious. Computer data scientist can either use

compiled language or scripting language.

Compiled languages though fast have

disadvantages of being less interactive, verbose

syntax and manual memory management. On

the other hand Python works on the phrase “we

code what we think” making it more interactive

and user friendly. It has rich computing

libraries with widely spread open source

environment. It is a very readable language with

clear non-verbose syntax. It is easy to combine

Python with compiled languages, like Fortran,

C, and C++, which are widely used languages

for scientific computations. This study

emphasises on the Python’s role in scientific

computing. .In this paper, it is demonstrated

how Python can be used in scientific computing.

Keywords-Scientific Computing, Python,

Compiled languages, Scripted languages

I. INTRODUCTION

Scientific Computing is the burgeoning field that

involves statistics, computer science and numerous

applied scientific domains. Python is programming
language developed in the late 1980s, by Guido van

Rossum. It is used by thousands of people to do

things from testing microchips at Intel, to powering

Instagram, to building video games with

the PyGame library. Python very closely resembles

the English language .Being an open source

language, a lot of this has been released for others

to use. Dealing with large amounts of data,

processing and visualising it can be a challenge.

Python with libraries like NumPy, Scipy and

matplotlib has become powerful scientific

computing language.

II. SCIENTIFIC COMPUTING MODULES

A. NumPy (Numerical Python)-

NumPy(Numerical Python) is the fundamental

package for scientific computing with Python

which can apply linear algebra, fourier transforms,

high performance vector and make a N-

dimensional powerful array object. Python with

NumPy module provides a best alternative to

FORTRAN and C++.To use NumPy module

following syntax is used:

NumPy provides:

 Extension package to Python for multi-

dimensional array

 Higher efficiency

 Array oriented programming

Ways to initialize NumPy array:

 Lists

 Functions

 Reading data from files

Lists-To create new vector and matrix arrays from

Python lists we can use the numpy.array function.

Getting the other attributes of created array-

 >>>Import numpy as np

>>>a=np.array([2,4,6,8])

>>>a.ndim

>>>1

>>>a.shape

>>>(4,)

>>>len(a)

>>>4

 Fig 1.1

http://pygame.org/

International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 299-302
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

300

Functions : To create large arrays it is impractical

to enter data manually, so in this case arrays are

generated by functions like arange, linespace and

logspace,mgrid, random data, diag, zeros and ones

etc.

Using arange function:-

Using mgrid:-

Using diagonal matrix:-

 B. Scipy (Scientific Python)

Build on the top of the low-level framework of

NumPy framework for multi-dimensional

frameworks provide many scientific algorithms.

The SciPy extends the functionality of NumPy with

a collection of useful algorithms. It is the core

package for scientific routine in python. It contains

many toolboxes useful for solving common issues

in scientific computing. Its different sub-modules

correspond to different applications. Some are as

follows-

 Special functions
 Integration

 Fourier transformations

 Linear algebra

 Interpolation

 Statistics

 File IO

 Optimization

 Image and Signal Processing

 Sparse Eigen value Problems

Each of these sub-modules provides a number of

functions and classes that can be used to solve

problems in their respective topics.

To access the SciPy package following syntax is

used:

C. .Matplotlib:

Matplotlib is an exclusive library for generating 2D

scientific figures which can be controlled

programmatically. It is used for visualizing results.

It provides both a very quick way to visualize data

from Python and publication-quality figures in

many formats. Matplotlib tries to make easy things

easy and hard things possible. It can generate plots,

histograms, power spectra, bar charts, error charts,

scatter plots, etc, with just a few lines of code. The

key advantages are-

 Support LATEX formatted labels and

texts

 Good control of every element in figure

 High quality outputs in different formats

>>>a=arange(2,10,2)#start,stop,step

>>>a

>>>([2,4,6,8,10,12,14,16,18,20])

Fig. 1.2

>>>a,b=mgrid[0:5, 0:5]

>>>a

>>>array([[0, 0, 0, 0, 0],

 [1, 1, 1, 1, 1],

 [2, 2, 2, 2, 2],

 [3, 3, 3, 3, 3],

 [4, 4, 4, 4, 4]]

 Fig 1.3

>>>diag([1,2,3])

>>>([[1, 0, 0],

 [0, 2, 0],

 [0, 0, 3]])

 Fig 1.4

>>>Import SciPy as sp

>>>from scipy import integrate

>>>result , error = integrate.quad(np.sin , 0,np.pi)

>>>result , error

>>>(2.0, 2.220446049250313e-14)

 Fig.1.5

International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 299-302
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

301

Matplotlib comes with a set of default settings that

allow customizing all kinds of properties like figure

size and dpi, line width, color and style, axes, axis

and grid properties, text and font properties etc.

To access Matplotlib:-

Input:

Output:

III. REVIEW OF LITERATURE

Guido van Rossum, Python’s original author,

explains “This emphasis on readability is no

accident. As an object-oriented language,

Python aims to encourage the creation of

reusable code. Even if we all wrote perfect

documentation all of the time, code can hardly

be considered reusable if it’s not readable.

Many of Python’s features, in addition to its

use of indentation, conspire to make Python

code highly readable.”

Long time pythoneer tim peters writes about

the Pyton design, The Zen of Python: Beautiful

is better than ugly; Explicit is better than

implicit; Simple is better than complex;

Complex is better than complicated; Flat is

better than nested; Sparse is better than dense;

Readability counts; Special cases aren't special

enough to break the rules; Although

practicality beats purity; Errors should never

pass silently; Unless explicitly silenced; In the

face of ambiguity, refuse the temptation to

guess; There should be one— and preferably

only one —obvious way to do it; Although that

way may not be obvious at first unless you're

Dutch; Now is better than never; Although

never is often better than right now; If the

implementation is hard to explain, it's a bad

idea; If the implementation is easy to explain,

it may be a good idea; Namespaces are one

honking great idea—let's do more of those!

IV. FINDINGS

 Python is a highly interactive

programming language that gives students

a chance to learn by interactive

experiments and exploration as it is object

oriented, imperative and functional.

 NumPy and SciPy are the bread and butter

extensions for numerical analysis and

scientific computing. They provide almost

all the functionalities required for data

science.

 Python being an open source offers wide

range of libraries useful for so many

applications in many areas.

 Readability has a number of beneficial

effects.

 Many common mathematical and

numerical routines have been pre-

compiled to run very fast and grouped into

packages that can be added to Python in

an entirely transparent manner.

 Python interpreters are available for

many operating systems, allowing

Python code to run on a wide variety of

systems

 Python has an extensive eco-system for

scientific libraries and environments.

- numpy: http://numpy.scipy.org -

Numerical Python

 -scipy:http://www.scipy.org

 -matplotlib: http://www.matplotlib.org

 Existing numerical C/Fortran libraries

can be interfaced to be usable from

within Python

V. CONCLUSION

Scientific computing in python has expanded many

folds. Python has become the language of choice

for many people in scientific computing. Python

has maintained the philosophy of “batteries

>>>import matplotlib.pyplot as plt

x = linspace(0, 5, 10)

y = x ** 2

In[6]: figure()

plot(x, y, 'r')

xlabel('x')

ylabel('y')

title('title')

show()

Fig. 1.6

https://en.wikipedia.org/wiki/Operating_system

International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 299-302
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

302

included” .portability, flexibility, extendibility,

syntax and style of python overcome the

disadvantage of slower than other languages like

JAVA,C++ etc. The use of python in the areas like

scientific computing, web and internet

development, developing games, Desktop GUIs

,software development etc is making it more

popular and widely used language of all the times,

even it is the official language at GOOGLE. Python

has been instrumental as it put the advanced

software techniques within our reach. Programming

languages have their own ecosystems, cultures and

philosophies distributing their roles, for each role

the most suitable language are chosen. Python
being a dynamic programming language is perfect

for major applications. Companies worldwide are

using Python to harvest insights from their data and

get a competitive edge.

VI. REFERENCES

[1] Robert Johansson. Introduction to Scientific

Computing in Python.

[2] Hans Petter Langtangen. A Primer on

Scientific Programming with Python.

[3] Zed A. Shaw. Learn Python the hard way.

[4] Atanas Radenski. "Python First": A Lab-

Based Digital Introduction to Computer Science

[5] Hans Fangohr. Introduction to Python for

Computational Science and Engineering.

[6] Jacco Hoekstra. AE Tutorial Programming

Python.

[7] Randy Paffenroth, Xiangnan Kong. Python in

Data Science Research and Education. Proc. of the

14th python in science conf. (scipy 2015).

[8] M. Scott Shell. An introduction to Python for

scientific computing.

[9] Christian Seberino. Python: faster and easier

software development

