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I. INTRODUCTION 

The origin of graph theory started with the problem 

of Koinsber bridge, in 1735.  

This problem lead to the concept of Eulerian Graph. 

Euler studied the problem of Koinsberg bridge and 

constructed a structure to solve the problem called 

Eulerian graph.  

In 1840, A.F Mobius gave the idea of complete graph 
and bipartite graph and Kuratowski proved that they 

are planar by means of recreational problems. 

 The concept of tree, (a connected graph without 

cycles was implemented by Gustav Kirchhoff in 

1845, and he employed graph  theoretical ideas in the 

calculation of currents in electrical networks or 

circuits. 

In 1852, Thomas Gutherie found the famous four 

color problem. 

Then in 1856, Thomas. P. Kirkman and William 

R.Hamilton studied cycles on polyhydra and invented 

the concept called Hamiltonian graph by studying 
trips that visited certain sites exactly once. 

In 1913, H. Dudeney mentioned a puzzle problem. 
Eventhough the four color problem was invented it 

was solved only after a century by Kenneth Appel 

and Wolfgang Haken.  

This time is considered as the birth of Graph Theory. 

Cayley studied particular analytical forms from 

differential calculus to study the trees. This had many 

implications in theoretical chemistry. This lead to the 

invention of enumerative graph theory. 

Any how the term “Graph” was introduced by 

Sylvester in 1878 where he drew an analogy between 

“Quantic invariants” and covariants of algebra and 
molecular diagrams. 

In 1941, Ramsey worked on colorations which lead 

to the identification of another branch of graph theory 

called extremel graph theory.  

In 1969, the four color problem was solved using 

computers by Heinrich. The study of asymptotic 

graph connectivity gave rise to random graph theory. 

In 1971 R.Halin introduced an example of minimally 

3- connected Graphs. 

1.1 Definition:  A graph – usually denoted G(V,E) or 

G = (V,E) – consists of set of vertices V together 

with a set of edges E. The number of vertices in a 

graph is usually denoted n while the number of edges 

is usually denoted m. 

1.2 Definition: Vertices are also known as nodes, 

points and (in social networks) as actors, agents or 
players.   
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1.3 Definition:  Edges are also known as lines and 

(in social networks) as ties or links. An edge  

e = (u,v) is defined by the unordered pair of vertices 

that serve as its end points.  

1.4 Example: The graph depicted in Figure 1 has 

vertex set V={a,b,c,d,e.f} and edge set  

E = {(a,b),(b,c),(c,d),(c,e),(d,e),(e,f)}. 

                                                     

 

                                                                                  

Figure 1. 

1. 5 Definition: Two vertices u and v are adjacent if 

there exists an edge (u,v) that connects them.  

1.6 Definition: An edge (u,v) is said to be incident 

upon nodes u and v.  

1.7 Definition: An edge e = (u,u) that links a vertex 

to itself is known as a self-loop or reflexive tie.   

1.8 Definition: Every graph has associated with it an 

adjacency matrix, which is a binary n n matrix A in 

which aij = 1 and aji = 1 if vertex vi is adjacent to 

vertex vj, and aij = 0 and aji = 0 otherwise. The 

natural graphical representation of an adjacency 

matrix is a table, such as shown below. 

 a b c d e f 

a 0 1 0 0 0 0 

b 1 0 1 0 0 0 

c 0 1 0 1 1 0 

d 0 0 1 0 1 0 

e 0 0 1 1 0 1 

f 0 0 0 0 1 0 

Adjacency matrix for graph in Figure 1 

1.9 Definition:  Examining either Figure 1 or given 

adjacency Matrix, we can see that not every vertex is 

adjacent to every other. A graph in which all vertices 

are adjacent to all others is said to be complete.  

1.10 Definition: While not every vertex in the graph 

in Figure 1 is adjacent, one can construct a sequence 

of adjacent vertices from any vertex to any other. 

Graphs with this property are called connected.  

1.11 Note: Reachability. Similarly, any pair of 

vertices in which one vertex can reach the other via a 

sequence of adjacent vertices is called reachable. If 

we determine reachability for every pair of vertices, 

we can construct a reachability matrix R such as 

depicted in Figure 2. The matrix R can be thought of 

as the result of applying transitive closure to the 
adjacency matrix A. 

 

                                                                                     

Figure:  2 

1.12 Definition :  A walk is closed if vo = vn.degree 

of the vertex and is denoted d(v). 

1.13 Definition : A tree is a connected graph that 

contains no cycles. In a tree, every pair of points is 
connected by a unique path. That is, there is only one 

way to get from A to B. 
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Figure 3: A labeled tree with 6 vertices and 5 

edges 

1.14 Definition: A spanning tree for a graph G is a 

sub-graph of G which is a tree that includes every 

vertex of G. 

1.15 Definition:  The length of a walk (and therefore 

a path or trail) is defined as the number of edges it 

contains. For example, in Figure 3, the path a,b,c,d,e 

has length 4.  

1.16 Definition: The number of vertices adjacent to a 

given vertex is called the degree of the vertex and is 

denoted d(v). 

1.17 Definition : In the mathematical field of graph 

theory, a bipartite graph (or bigraph) is a graph 

whose vertices can be divided into two disjoint sets U 

and V such that every edge connects a vertex in U to 

one in V; that is, U and V are independent sets. 
Equivalently, a bipartite graph is a graph that does 

not contain any odd-length cycles. 

                         

 

    Figure 4:   Example of a  bipartite graph. 

1.18 Definition: An Eulerian circuit in a graph G is 

circuit which includes every vertex and every edge of 

G. It may pass through a vertex more than once, but 

because it is a circuit it traverse each edge exactly 
once. A graph which has an Eulerian circuit is called 

an Eulerian graph. An Eulerian path in a graph G is a 

walk which passes through  every vertex of G and 

which traverses each edge of G exactly once  

1.19 Example :  Königsberg bridge problem: The 

city of Königsberg (now Kaliningrad) had seven 

bridges on the Pregel River. People were wondering 

whether it would be possible to take a walk through 

the city passing exactly once on each bridge. Euler 
built the representative graph, observed that it had 

vertices of odd degree, and proved that this made 

such a walk impossible. Does there exist a walk 

crossing each of the seven bridges of Königsberg 

exactly once? 

                                                                                

          Figure 5:   Konigsberg problem 

II. HAMILTONIAN GRAPHS, COMPLETE 

GRAPHS, PAN-CYCLIC GRAPHS  

In this section we have to prove that Relations 

between Hamiltonian Graphs and Pan-cyclic 

Graphs. 

2.1 Definition: A Hamilton circuit is a path that 

visits every vertex in the graph exactly once and 

return to the starting vertex. Determining whether 

such paths or circuits exist is an NP-complete 

problem. In the diagram below, an example Hamilton 
Circuit would be 

2.2 Example: 

                     

 

Figure 6: Hamilton Circuit would be AEFGCDBA 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Independent_set_(graph_theory)
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
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2.3 Definition: Pancyclic Graphs :A graph G of 

order n  3) is pancyclic if G contains all cycles of 

lengths from 3 to n. G is called vertex-pancyclic if 

each vertex v of G belongs to a cycle of every length 

‘l,’ where 3   l   n.  

2.4 Example :Clearly, a vertex-pancyclic graph is 

pancyclic. However, the converse is not true.  

   v1                              v5 

    

                     v7 v2 v6  

                           v3   v4 

                 Figure7: Pan-Cyclic Graph 

The result of pancyclic graphs was initiated by 

Bondy , who showed that Ore’s sufficient  condition 

for a graph G to be Hamiltonian .  

Note that if   ≥ n / 2 then  m ≥ n2 / 2 . 

The proof of the following result due to Thomassen 

can be found in Bollobas. 

2.5 Theorem : Let G be a Complete Hamiltonian 

Graph on ‘n’ vertices with at least n2 / 2 edges. Then 

G is either Pancyclic or else is the complete bipartite 

graph K n / 2 , n /2 .  

If G is Complete Hamiltonian and m > n2 / 4 then G 
is pancyclic.  

Proof  :The result can easily be verified for n = 3.  

We may therefore assume that n  4.  

We apply induction on n. 
Suppose the result is true for all graphs of order at 

most n  1 (n  4),  and let ‘G’ be a Complete 

Hamiltonian Graph of order n.  

First, assume that ‘G’ has a cycle C = v
0
v

1
 . . .v n 2 v0

 

of length n  1. 

Let ‘v’ be the (unique) vertex of ‘G’ not belonging to 
‘C’.  

If d(v)  n /2 , v is adjacent to two consecutive 
vertices on  C and  

hence ‘G’ has a cycle of length 3.  

Suppose for some r, 2  r  (n-1) / 2  , 

‘C’ has no pair of  vertices ‘u’ and ‘w’ on ‘C’ 

adjacent to ‘v’ in G with dC(u, w) = r. 

 Then if vi1, vi2, . . .vid(v ) are the  vertices of ‘C’ that 

are adjacent to ‘v’ in ‘G’ (recall that C contains all 

the vertices of G except v),  

then vi1+ r , vi2+r , . . ., vid(v)+ r are nonadjacent to v in 

G,  

where the suffixes are taken modulo (n  1).  

Thus, 2d(v)  n  1, a contradiction.  

Hence, for each r, 2  r  (n-1) / 2  , 

‘C’  has a pair of  vertices ‘u’ and ‘w’ on ‘C’ 

adjacent to ‘v’ in G with dC(u, w) = r.  

Thus for each r, 2  r  (n-1) / 2 , G  has a cycle of 

length r + 2 as well as a cycle of length  

n  1  r + 2 = n  r + 1 . 

Thus ‘G’ is pancyclic.  

If d(v)  (n-1) / 2, then G[V (C)], the sub graph of 
‘G’  induced by V (C) has at least  

n2/4 – (n-1) / 2  > (n 1)2 / 4 edges.  
So, by the induction assumption, G[V (C)] is 

pancyclic and hence ‘G’ is pancyclic.  

Next, assume that ‘G’ has no cycle of length n  1.  

Then G is not pancyclic.  

In this case, we show that G is K n/2 , n/2 .  

Let C = v
0
v

1
v

2 . . .vn 1v
0

 be a Hamilton cycle of ‘G’.  

We claim that of the two pairs vivk and  vi+1vk+2 

(where suffixes are taken modulo n), at most only 

one of them can be an edge of G.  

Otherwise, vkvk 1vk 2 . . .vi+1vk+2vk+3vk+4 . . .vivk 

is an (n  1)-cycle in G. 

It is  a contradiction.  

Hence, if d(vi) = r, then there are ‘r’ vertices adjacent 

to vi in G and hence at least ‘r’ vertices (including 

vi+1 since vivi 1  E(G)) that are nonadjacent to 

vi+1.  

Thus, d(vi+1)    n  r and  d(vi) + d(vi+1)  n. 

Summing the last inequality over i from 0 to n  1, 

we get 4m  n2.  

But by hypothesis, 4m  n2. 

Hence, m = n2/4 and so n must be even.  

This gives d(vi) + d(vi+1) = n for each i, and thus for 

each i and k, exactly one of vivk and  

vi+1vk+2 is an edge of G.    

Thus, if G ≠ Kn/2 , n/2 , then certainly there exist i and 

j such that viv j  E and  

i  j (mod 2).  

Hence for some j, there exists an even positive 

integer s such that v j+1v j+1+s  E. 

 Choose ‘s’ to be the least even positive integer with 

the above property.  

Then v jv j+1+s  does not belongs to E. Hence, s  4 

(as s = 2 would mean that v jv j+1  E).  

Again, by , v j 1v j+s 3 = v j 1v j 1+(s 2)  E(G)  

contradicting the choice of s.  

Thus, G = Kn/2 , n/2 . The last part follows from the 
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fact that  

|E(K n/2 , n/2 , )| = n2/ 4. Hence the theorem 

2.6Theorem : Let G ≠ Kn/2 , n/2 , be a Complete 

Hamiltonian graph with n  3 vertices and let 

d(u)+d(v)  n for every pair of non-adjacent vertices 

of ‘G’. Then G is pancyclic.  

Proof :we know that Let G be a Complete 

Hamiltonian Graph with n vertices and let u and v be 

non-adjacent vertices in G such that d(u)+d(v) ≥ n.  

Let G+uv denote the super graph of G obtained by 

joining u and v by an edge. Then G is Hamiltonian if 

and only if G+uv is Hamiltonian. 

We show that G is pan-cyclic by first proving that m 

  n2 / 4      and then invoking above theorem This is 

true if   n / 2  (as 2m =  di   n  n2/2).  

So assume that  < n / 2 
Let S be the set of vertices of degree  in G.  

For every pair (u, v) of vertices of degree  , d(u) + 

d(v) < n/2 + n/2  = n.   
Hence by hypothesis, ‘S’ induces a clique of G and 

|S|   + 1.  

If  |S| =  + 1, then G is disconnected with G[S] as a 

component, which is impossible (as G is  

Hamiltonian).  

Thus, |S|   .  

Further, if v  S, v is nonadjacent to n  1   

vertices of G. 

 If ‘u’ is such a vertex, d(v) + d(u)  n implies that 

d(u)  n   .  
Further, ‘v’ is adjacent to at least one vertex w ¢ S 

and d(w)   + 1, by the choice of S. 

 These facts give that 2m =  di   

(n    1)(n   ) +  2 + (  + 1),  
where 1≤ i ≤ n the last (  + 1) comes out of the 

degree of w. 

 Thus, 2m  n2  n(2  + 1) + 2  2 + 2  + 1,  
which implies that  

4m  2n2  2n(2  + 1) + 4  2 + 4  + 2 

= (n  (2  + 1)2 + n2 + 1  

 n2 + 1, since n > 2  .  
Consequently, m > n2

 / 4 , and by above theorem,  

G is pancyclic. 

Hence the theorem 
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