
 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 3, ISSN No. 2455-2143, Pages 38-44
 Published Online January-February 2017 in IJEAST (http://www.ijeast.com)

38

A HUFFMAN ALGORITHM OPTIMAL

TREE APPROACH FOR DATA

COMPRESSION AND DECOMPRESSION

 Nirmal Sharma S. K. Gupta
Research Scholar, Computer Science Computer Science. & Engineering.

Teerthanker Mahaveer University Moradabad, Department of BIET, Jhansi,

 U.P., INDIA U.P., INDIA

Abstract- Data compression is very successful

approach for storing, retrieving, and transmitting

data at the optimum resources. As the uses of

databases are dramatically increasing, the data

compression paradigm to reduce the size of data

warehouse contents require as basic

infrastructure for the organization. The objective

of this research work is to reduce the size of data

warehouse contents during execution time. The

Information Technology has a large number of

implementation data compression algorithms that

compresses the data and reduces the size of

database. It is tough task to reduce the size of

contents of database and minimize the time

consumption. In this paper we present steps by

step algorithm to minimize the size of data

warehouse by compressing the database. The

algorithm is very simple, clear and specific; this

algorithm of data compression and decompression

in data warehouse of tree based structure. The

algorithm will operates each bit of data exclusive

file to reduce the size without losing any data

afterward translating which is classified to lossless

data compression. This approach is quantified and

the business user can operate the organization

report using this algorithm.

Keywords: Compression Algorithm, data

compression, data decompression, data warehouse,

optimal tree, buffer overrun.

I. INTRODUCTION

Almost every organization needs database for

keeping information and their entire decision making

system depends upon the proper functioning of

databases. As the competition and pressure increases

it’s become a primary objective of all the

organization to store data in such a way that if any

one requires the data it can be transmitted through

network easily and retrieve the data accordingly. The
large volume of data sometimes leads a buffer

overrun problem. A buffer overflow condition

occurs when a program attempts to read or write

outside the bounds of a block of allocated memory or

when a program attempts to put data in a memory

area past a buffer [1][2]. The data compression

paradigm is the best way to compact the data that

require minimum bits space as compare to their

original representation. The structure and function of

data warehousing and data mining in any

organization plays a vital role for the smooth

functioning and their success. Large volume or
complex data always creates problem during storing,

transmitting and retrieving. Therefore, data

compression is desperately required by all the

organization for smooth, reliable and timely

availability of the information. There is a number of

data compression algorithm developed by researchers

to compress the data and image files. A little work

has been done in this research paper to reduce the

size of the data and minimize the access time of

fetching the records from the data warehouse [3].

Huffman data encoding paradigm based on the
lossless compression of frequency of data occurrence

in a file that is being compressed. The Huffman

algorithm is statistical coding based technique, which

means the more probable the occurrence of a symbol

is; the shorter will be its bit-size representation. In

any file, some characters are used more than others

characters. Using binary representation, the number

of bits required to represent each character depends

upon the number of characters that have to be

represented. Using one bit we can represent two

characters, i.e., 0 represents the first character and 1
represents the second character. Using two bits we

can represent four characters, and so on.

The amount of space required to store each ASCII

character. Uncommon characters need important

treatment; they require the same 8 bits that are used

for much rarer characters. A file whose size is larger

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 3, ISSN No. 2455-2143, Pages 38-44
 Published Online January-February 2017 in IJEAST (http://www.ijeast.com)

39

characters encoded using the ASCII scheme will take

largest bytes size. A fixed-length encoding like
ASCII is convenient because the boundaries between

characters are easily determined and the pattern used

for each character is completely fixed (i.e. 'A' is

always exactly 65). This approach is using optimal

tree and balanced tree encoding and decoding data

[4].

This paper organized as the general introduction of

data compression and designs the balanced tree by

Huffman algorithm in section-1. The algorithm

related to data compression and decompression

proposed in section-2, followed by the results
obtained using Huffman algorithm in section-3,

finally the future work and conclusion are compiled

in section-4, references are mention in section-5.

II. PROPOSED ALGORITHM

The proposed algorithm works on tree nodes of data

that should be reduced in size and enhance the input

mechanism handle by Huffman coding. This

algorithm is to divide into two parts first is encoding

and second one is decoding data with tree base

structure.

2.1 Using: Huffman Coding Algorithm

The ASCII set has 256 characters with identical

occurrence. In this table has used 90 and unique

characters. This algorithm precedes assistance of the

difference between occurrences and practices little bit

space for the frequently occurring characters at the

amount of consuming to use more space for each of

the more infrequent characters. For instance as tree

structure encoding form—it is involved bits format.

The reserves character from not consuming to

practice a full 8 bits for the most corporate characters

makes up for consuming to practice more than 8 bits

for the infrequent characters and the overall result is
that the file virtually always desires little bit space

[5].

2.1.1 A Tree Structure as encoding form

Binary tree show each element for encoded form and
exact figure. Each character is kept at a leaf node.

Any exact character encoding is found by outlining

the way from the root to its node. Each left-going

edge denotes a 0, each right-going edge a 1 as shown

in figure-1. For instance, this tree statistics the

compressed fixed-length encoding we recognized

earlier:

0 1

0 1 0 1

 0 1 0 1 0 1 0 1

 M I S P T A E _

Figure 1 Tree structure of Huffman coding

Overhead tree shows, the encoding for ‘P’ can be

resolute through outlining the way from the root to

the 'P' node. Successful left before right then right
over denotes a 011 encoding.

Nowadays, in this figure shows as a tree for the
variable-length Huffman encoding we were

consuming

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 3, ISSN No. 2455-2143, Pages 38-44
 Published Online January-February 2017 in IJEAST (http://www.ijeast.com)

40

 0 1

0 1 0 1

 S

 0 1 0 1 0 1

 - E A
Figure 2 Second Level Tree structure of Huffman coding

The way to 'S' is impartial left right or 01; the way to

'A' is right-right-right-right or 111. The prefix

belongs of the Huffman encoding is visually denoted

by the element that characters only conquer leaf

nodes as shown in figure-2.

The tree presented above for "MISSISSIPPI

STATE" is, in fact, an optimal tree—there are no

other tree encodings by character that use fewer than

42 bits to encode this string. There are other trees that

use exactly 42 bits; for example you can simply

exchange any sibling nodes in the above tree and get

a different but equally optimal encoding.

The Huffman tree doesn’t seem as balanced as the

fixed-length encoding tree. You have received in our

argument on binary search trees that an unbalanced

tree is bad thing. However, when a tree represents a

character encoding, that imbalance is actually a good

thing. The shorter routes represent those often
occurring characters that are being encoded with

fewer bits and the longer routes are used for more

rare characters. Our plan is to shrink the total number

of bits required by shortening the encoding for some

characters at the expense of lengthening others. If all

characters occurred with equal frequency, we would

have a balanced tree where all routes were roughly

equal. In such a situation we cannot attain much

compression since there are no real replications or

patterns to be broken [6].

2.1.2 A Tree Structure using Decoding form

In this figure shows encoding such as a tree easily

converted into decoding form. We are used fixed-

length tree to decode the stream of bits

0111000100100010. Twitch at the creation of the bits

and at the origin of the tree. The original bit is 0, thus

suggestion one stage to the left, the succeeding bit is

1, thus monitor right from here, and we have present

powerful at a leaf, which displays that we have

impartial finalized assessment the bit design for a

distinct character. Detecting at the leaf's make, in this

research paper, we impartial input a 'S'. Present we

prefer wherever we left off in the bits and twitch

finding over from the origin. Finding 110 leads us to

'E'. Current over the outstanding bits and we decode

the string "SETTMI".

Producing an optimal tree

Question is raised here, how did we create distinct

tree? We necessary an algorithm for producing the

optimal tree giving a minimal per-character encoding

for a exact file. The algorithm we will practice here

was developed by D. Huffman in 1952.

The Huffman tree is producing the character;
individually character becomes a load identical to the

number of times it happens in the file. For instance,

in the "MISSISSIPPI STATE" the character 'S' has

load 5, 'I' has load 4, the ‘P’ and ‘T’ have load 2, and

the other characters have load 1. Our initial job is to

figure these loads, which we can prepare by a simple

permit over the file to become the occurrence

computations. For each character, we generate free

tree node covering the character assessment and its

consistent load. A tree has each node through

impartial one access. The main purpose to
association, all these distinct trees are an optimal tree

through connecting them organized from the lowest

upwards [7].

The common method following steps are:

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 3, ISSN No. 2455-2143, Pages 38-44
 Published Online January-February 2017 in IJEAST (http://www.ijeast.com)

41

1. Singleton trees are created a collection of each

character, each character load identical to the
character frequency as shown in figure-3.

2. Since the gathering, pick out the two trees with the

lowest loads and eliminate them. Combine them into

an original tree whose root has a load identical to the

amount of the loads of the two trees and with the two

trees as its left and right sub trees.

3. Increase the original collective tree back into the

gathering.
4. Replication steps 2 and 3 until there is only one

tree left.

5. The outstanding node is the origin of the optimal

encoding tree.

 5 4 2 2 1 1 1 1

S I PMA

AA

4
2 2

P MA

A

TE-

AA

T E-

1 1 1 1

M A E -

2 2
5

S I P T MA

AA

4 2 2

M

A

A

E-

AA

E -

1 1 1 1

S I P T M A E -

5

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 3, ISSN No. 2455-2143, Pages 38-44
 Published Online January-February 2017 in IJEAST (http://www.ijeast.com)

42

Figure 3 Step-1 to 4 Tree structure of Huffman Decoding

Huffman coding has needs information of

occurrences for each representation from alphabet.

The output of compressed by the Huffman tree

through the Huffman codes for signs or just the
occurrences of signs which are applied to make the

Huffman tree should be deposited. This data is

desired throughout the decoding process and it is

located in the caption of the compressed file. The

algorithm produces codes that are supplementary

active than static Huffman coding. Loading Huffman
tree beside by the Huffman codes for signs with the

Huffman tree is not desired here [8][9].

III. RESULT OF DATABASE

Table 1 Access Time Performance of Database

Database (n) Size_of_Database Access Time(Milliseconds) (X)

NIU_CS 110040 2250

NIU_EC 110730 2280

NIU_CE 120060 2303

NIU_ME 198310 2859

NIU_BT 200830 2908

NIU_EE 200940 2950

NIU_EEE 210010 2985

NIU_SBM 220050 2998

NIU_SLA 250000 3031

NIU_SOS 260000 3020

NIU_LAW 280000 3060

NIU_NURSING 290000 3090

NIU_ARCH 300000 3100

IPMA

AA

5 4

I PMA

A

STE-

AA

S TE-

2 2 2

P MA T E-

4 4

M A

A

1 1

2

E -

A

1 1

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 3, ISSN No. 2455-2143, Pages 38-44
 Published Online January-February 2017 in IJEAST (http://www.ijeast.com)

43

Figure 4 Access Time Performance of Database

A multiple database can use above algorithm so that

the organization has a large volume of data which has
to be maintained by using a particular algorithm. A

database stores large amounts of departmental

information and all details of a department. The

above information can be used to solve a number of

queries, and it can be used to increase the

functionality of an organization in a short time. Not

only users are able to access the database contents,

but this data is also providing integrity [10][11]. Not

only they must be able to do this work, but also able

to manage this information with current data. When it

manages database, we can do more functions on this
database other than exchange. All the above types of

problem can be solved by proposed algorithm. The

figure-4 depicts that as the size of database increases

the performance related to access time is decreasing

subsequently.

IV. CONCLUSION

In this paper shows data compression and

decompression algorithm using Huffman coding

approach with balanced tree based structure. By

research consuming different categories of files with

20 records of each category was showed result. This

algorithm stretches improved compression ratio time
is compressed. For the purpose that roughly files

involve of hybrid contents as audio video and text

etc. the capability to identify substances irrespective

the file category, divided it then compresses it

distinctly with suitable algorithm to the substances is

0

50000

100000

150000

200000

250000

300000

350000

400000

0

500

1000

1500

2000

2500

3000

3500

4000

N
IU

_C
S

N
IU

_E
C

N
IU

_C
E

N
IU

_M
E

N
IU

_B
T

N
IU

_E
E

N
IU

_E
EE

N
IU

_S
B

M

N
IU

_S
LA

N
IU

_S
O

S

N
IU

_L
A

W

N
IU

_N
U

R
SI

N
G

N
IU

_A
R

C
H

N
IU

_E
D

U

N
IU

_F
IN

EA
R

T

N
IU

_M
ED

IA

N
IU

_B
D

S

N
IU

_M
B

B
S

N
IU

_B
SW

N
IU

_M
SW

Access Time(Milliseconds) (X)

Size_of_Database

NIU_EDU 305000 3150

NIU_FINEART 310000 3190

NIU_MEDIA 310500 3193

NIU_BDS 320500 3200

NIU_MBBS 330000 3290

NIU_BSW 330500 3300

NIU_MSW 340000 3350

 International Journal of Engineering Applied Sciences and Technology, 2017
 Vol. 2, Issue 3, ISSN No. 2455-2143, Pages 38-44
 Published Online January-February 2017 in IJEAST (http://www.ijeast.com)

44

possible for supplementary research in the upcoming

to attain improved compression ratio. We observed at
the structure of database and the numerous phases of

compression and the decompression, in which the

phases are track in opposite direction compared to the

compression. HEC Using Huffman coding, we can

translate the communication into a string of bits and

send it to you. However, you cannot decompress the

communication, because you don't have the encoding

tree that we used to direct the communication.
Huffman coding has two features: It needs only one

pass over the input and it improves tiny or no

overhead to the output. This algorithm has to

restructure the complete Huffman tree after encoding
each sign which converts slower than the Huffman

coding.

V. REFERENCES

[1] Mahtab Alam, Prashant Johri, Ritesh Rastogi,
Buffer Overrun: Techniques of Attack and Its

Prevention, International Journal of Computer

Science & Emerging Technologies (E-ISSN:

2044-6004), Volume 1, Issue 3, October 2010,

pp: 1-6.

[2] Jonathan Pincus, Brandon Baker, Beyond Stack

Smashing: Recent Advances in Exploiting

Buffer Overruns”, IEEE Coputer Society, 2004,

pp.20-27.

[3] Capo-chichi, E. P., Guyennet, H. and Friedt, J.
K-RLE a New Data Compression Algorithm for

Wireless Sensor Network. In Proceedings of the

2009 Third International Conference on Sensor

Technologies and Applications.

[4] I Made Agus Dwi Suarjaya A New Algorithm
for Data Compression Optimization (IJACSA)

International Journal of Advanced Computer

Science and Applications, Vol. 3, No.8, 2012

[5] Bell, T.C., Witten, I.H., Cleary, J.G.: Calgary
Corpus: .Modeling for text compression.,

Computing Surveys 21(4), 557-591, 1989.

[6] Campos, A. S. E. Move to Front. Available:

http://www.arturocampos.com/ac_mtf.html (last

accessed July 2012).

[7] Julie Zelenski, Keith Schwarz,”Huffman

Encoding and Data Compression”, Spring May

2012

[8] Gallager R.G., “Variations on a theme by

Huffman”, IEEE Transactions on Information

Theory, Vol. 24, No. 6, pp. 668-674, 1978.

[9] Huffman D.A., “A method for the construction

of minimum-redundancy codes”, Proceedings

of the Institute of Radio Engineers, Vol. 40,

No.9, pp. 1098–1101, 1952.

[10] Vitter J.S., “Design and analysis of dynamic

Huffman codes”, Journal of the ACM, Vol. 34,

No. 4, pp.825-845, 1987.

[11] Vitter J.S., “Dynamic Huffman coding”, ACM

Transactions on Mathematical Software, Vol.

15, No.2, pp. 158-167, 1989.

