
 International Journal of Engineering Applied Sciences and Technology, 2018
 Vol. 3, Issue 2, ISSN No. 2455-2143, Pages 41-47
 Published Online June 2018 in IJEAST (http://www.ijeast.com)

41

SECURITY OF PKCS#11 WITH

HARDWARE SECURITY MODULES
Sahib Singh Juneja

Department of Information Technology
Amity University, Noida, India

Abstract-Cryptography is the boon of today’s

technology. All we need to do is save our data

from other intruders. In this paper we will

discuss the most important API standard which

is PKCS#11, along with its integration with the

hardware security modules. The main concern

aligns in the fear of facing that the most secure

PKCS#11 is also a victim of security attacks. We

will discuss the attacks and find an appropriate

solution to get prone of the attacks.

Keywords-cryptography; PKCS#11; security

attacks; wrapping-unwrapping

I. INTRODUCTION

Every time we hear the word cryptography all that

comes into mind is yes there is something that we

do not want the world to see, there is something

that we do not want any other person to use other
than the one we wish for. So the question that

comes is what basically is cryptography? What is

that we actually do so that people do not get our

information. Cryptography is nothing but the art of

hiding our information, the art or science of

modifying or information so that the unintended

user cannot read it. Talking about the most live and

basic example is suppose I want to have a chat with

my best friend on WhatsApp and I want to tell her

something very secretive .How do I know that a

person sitting so far away from me is the intended

person I am talking to?? The answer to this issue is
when I met my friend a few days back we both

decided to give each other a code. A code that only

we both know. So now when we have to talk I just

write suppose 010 (this is the code assigned to me)

and from her end I would get suppose 015 (code of

my friend). This is where I understand that yes I am

talking to the intended person with whom I am

supposed to share my talks with. This simple

example leads to a very important concept of

cryptography.

So basically cryptography is the study to
transmitting data in a way that only the intended

user can get the data. The most important question

that comes is what made cryptography of prime

importance in today’s world? The need of 5

objectives made cryptography of prime importance.

They being confidentiality, Integrity,

Authentication, Non-Repudiation and the last being

Authorization .The data to be sent must be highly
confidential. No other user other than the intended

receptor is supposed to get the data. This is of

prime importance in today’s world of secrecy Next

that whatever data is received by the receiver the

integrity of the data must be maintained. In other

words the data must not be altered in any

circumstances. When exchanging information a

user must be able to identify himself to the

receiver, that is he must me authenticated before

any data is transmitted between them. In order to

authenticate first of all the user must be authorized

to be on the network or be in the ring of
exchanging information. So cryptographic

primitives fulfil the purpose of authorization as

well. And the last thing is the Non-repudiation

which says a sender cannot deny whatever he is

sending. It is the concept of notarization that comes

into picture.

Many algorithms were generated till date in order

to get the encryption decryption done starting from

the basic called ceaser cipher, playfair cipher,

substitution ciphers, transposition ciphers, along

with some advanced algorithms of DES, RSA,
Deffie-Hellman, and many more. Data to be

encrypted in small amounts is still a simple task but

when we talk about enterprises that hold a large

amount of data and that too sensitive data, the first

and foremost requirement is of encrypting the data.

Based of software techniques encryption is one of

the way but then cryptographic events started

taking place through hardware namely Hardware

Security Modules (HSM’s). The main reason of

HSM’s coming in picture is because as the amount

of data increased, the length of keys used for

encrypting increased, which after a particular time
seems impossible to hold such large number of

keys in a secure way too. To indulge the severity of

securing large keys, HSM’s proved to be a better

option, reason being that is hardware.

II. WHY HARDWARE SECURITY

MODULES

Routinely IT is looked with a choice on whether

reason constructed appliances are desirable over

programming. All things considered, reason

manufactured appliances speak to another bit of

 International Journal of Engineering Applied Sciences and Technology, 2018
 Vol. 3, Issue 2, ISSN No. 2455-2143, Pages 41-47
 Published Online June 2018 in IJEAST (http://www.ijeast.com)

42

physical equipment for the IT association to

acquire, send, arrange, and keep up. More devices

add to the capital consumption spending plan, add

to the general IT many-sided quality (i.e., more bits

of one of a kind equipment), and maybe even point

of confinement arrangement adaptability inside the

IT condition. With IT associations effectively

battling with sizable and differing equipment
inventories and possibly confined quarters, and

quick to decrease their carbon impressions, a "more

specific equipment" approach may not generally be

the default decision.

In contrast to software, it has the benefit of

introducing and running on conceivably existing

and torpid servers and can ride the influx of

enhancing server value execution and vitality

efficiencies. Therefore, programming, at any rate at

first from budgetary, IT operational, and carbon

impression points of view, has all the earmarks of

being a commendable other option to reason
fabricated apparatuses. This careless perspective of

equipment versus programming, in any case, has

turned out to be less strong when the capacity being

referred to is security. Most business and legislative

elements perceive that security has one of kind

properties that are hard to rope into the general IT

condition while as yet keeping up useful

uprightness. As confirmation of this, the market for

reason constructed security machines is firmly

positive. Where weight exists to reign in security

machine sprawl, the bearings every now and again
sought after are multi-useful security apparatuses

(e.g., Unified Threat Management machines) or

sharp edge and skeleton security stages. In the two

occurrences, security capacities remain physically

autonomous from whatever is left of the IT

condition. HSM, as already portrayed, speaks to a

vital component in ensuring digitized data.

Endeavouring to achieve the same in programming

ought not be managed without completely thinking

about the suggestions. Following is our point of

view on this issue.

III. The PKCS#11 Model

The model for PKCS#11 can be seen illustrated

below, demonstrating how an application

communicates its requests to a token via the

PKCS#11 interface. The term slot represents a

physical device interface. For example, a smart

card reader would represent a slot and the smart

card would represent the token. It is also possible

that multiple slots may share the same token.

 Figure 1: General PKCS#11 Model

Within PKCS#11, a token is viewed as a device
that stores objects and can perform cryptographic

functions. Objects are generally defined in one of

four classes:

 Data objects, which are defined by an

application

 Certificate objects, which are digital

certificates such as X.509

 Key objects, which can be public, private

or secret cryptographic keys

 Vendor-defined objects

Objects within PKCS#11 are further defined as
either a token object or a session object. Token

objects are visible by any application which has

sufficient access permission and is connected to

that token. An important attribute of a token object

is that it remains on the token until a specific action

is performed to remove it.

A connection between a token and an application is

referred to as a session. Session objects are

temporary and only remain in existence while the

session is open. Session objects are only ever

visible to the application that created them.

Access to objects within PKCS#11 is defined by
the object type. Public objects are visible to any

user or application, whereas private objects require

that the user must be logged into that token in order

to view them. PKCS#11 recognizes two types of

users, namely a security officer (SO) or normal

user. The security officer’s only role is to initialize

a token and set the normal user's access PIN.

IV. USE OF PKCS#11 IN HSM

SafeNet ProtectToolkit-C is a cryptographic service
provider using the PKCS #11 application

programming interface (API) standard, as specified

by RSA Labs. It includes a lightweight, proprietary

 International Journal of Engineering Applied Sciences and Technology, 2018
 Vol. 3, Issue 2, ISSN No. 2455-2143, Pages 41-47
 Published Online June 2018 in IJEAST (http://www.ijeast.com)

43

Java API to access these PKCS #11 functions from

Java.

The PKCS #11 API, also known as Cryptoki,

includes a suite of cryptographic services for

encryption, decryption, signature generation,

signature verification, and permanent key storage.

The software found on the installation DVD is

compliant with PKCS #11 v. 2.20. To provide the
highest level of security, SafeNet ProtectToolkit-C

interfaces with SafeNet access provider software

and the SafeNet range of hardware security

modules (HSMs):

 SafeNet ProtectServer Network HSM

 SafeNet ProtectServer PCIe HSM

HSMs include high-speed DES and RSA hardware

acceleration, as well as generic security processing.

Secure, persistent, tamper-resistant CMOS key

storage is included. Multiple adapters may be used
in a single host computer to improve throughput or

to provide redundancy. HSMs may be installed

locally, on the same host system as SafeNet

ProtectToolkit-C or they may be located remotely

across a network.

Two product packages are available:

 Runtime for operational use

 Software Development Kit (SDK) for

developer use

With SafeNet ProtectToolkit-C SDK installed, the

API may operate in Software-Only mode for

testing and development. In this mode, access to an

HSM is not required.

The PKCS#11 Cryptographic Token Interface

Standard, also known as Cryptoki, is one of the

Public Key Cryptography Standards developed by

RSA Security. PKCS#11 defines the interface

between an application and a cryptographic device.

This chapter gives a general outline of PKCS#11

and some of its basic concepts. If unfamiliar with
PKCS#11, the reader is strongly advised to refer to

PKCS #11: Cryptographic Token Interface

Standard. PKCS#11 is used as a low-level interface

to perform cryptographic operations without the

need for the application to directly interface a

device through its driver. PKCS#11 represents

cryptographic devices using a common model

referred to simply as a token. An application can

therefore perform cryptographic operations on any

device or token, using the same independent

command set. SafeNet ProtectToolkit-C is a

cryptographic service provider using the PKCS #11
application programming interface (API) standard,

as specified by RSA Labs. It includes a lightweight,

proprietary Java API to access these PKCS #11

functions from Java. The PKCS #11 API, also

known as Cryptoki, includes a suite of

cryptographic services for encryption, decryption,

signature generation, signature verification, and

permanent key storage.
HSMs include high-speed DES and RSA hardware

acceleration, as well as generic security processing.

Secure, persistent, tamper-resistant CMOS key

storage is included. Multiple adapters may be used

in a single host computer to improve throughput or
to provide redundancy. HSMs may be installed

locally, on the same host system as SafeNet

ProtectToolkit-C or they may be located remotely

across a network. SafeNet ProtectToolkit-C can be

used in one of three operating modes. These are:

 PCI mode in conjunction with a locally-

installed SafeNet cryptographic services

adapter.

Network mode over a TCP/IP network, in

conjunction with a compatible product such as the

SafeNet ProtectServer PCIe HSM.

A machine with a SafeNet ProtectServer PCIe

HSM installed may also be used as a server in

network mode.

Software-only mode, on a local machine without

access to a hardware security module.

Within the client/server runtime environment, the

server performs cryptographic processing at the

request of the client. The server itself will only

operate in one of the hardware runtime modes.

The software-only version is available for a variety
of platforms, including Windows NT and Solaris,

and is typically used as a development and testing

environment for applications that will eventually

use the hardware variant of SafeNet ProtectToolkit-

C.

Cryptoki Configuration

A number of steps must be taken in order for

applications to operate correctly with SafeNet

 International Journal of Engineering Applied Sciences and Technology, 2018
 Vol. 3, Issue 2, ISSN No. 2455-2143, Pages 41-47
 Published Online June 2018 in IJEAST (http://www.ijeast.com)

44

ProtectToolkit-C. TheSafeNet ProtectToolkit-C

environment can be extensively configured in order

to allow for the wide range of security requirements

that various applications may have. It is important

therefore that these requirements be known when

configuring SafeNet ProtectToolkit so that the most

suitable security settings and functionality for the

particular applications can be chosen.
This chapter begins with an introduction to the

application and security model used by SafeNet

ProtectToolkit-C. The chapter then covers the steps

required to configure a system utilizing SafeNet

ProtectToolkit-C for the first time. The concepts of

Trust Management and Token Replication are

discussed and illustrated with examples

 Figure-2 The safenet protect toolkit-c model

V. REASON OF INDULGENCE OF

PKCS11

RSA Laboratories Public Key Standards

(PKCS)#11 illustrates the ‘Cryptoki’ API, designed

to be AN interface between applications and

cryptological devices like smartcards, Hardware

Security Modules (HSMs), and PCMCIA and USB
key tokens. it's been wide adopted in business,

promoting ability of devices. However, the API as

outlined within the normal provides rise to variety

of significant security vulnerabilities, [4]. In

observe, vendors try and shield against these by

proscribing the practicality of the interface, or by

adding further options, the small print of that area

unit typically onerous to see. This has crystal

rectifier to AN unsatisfactory state of affairs in that

wide deployed security solutions area unit

mistreatment AN interface which is understood to
be insecure if enforced naively, and that there aren't

any well-established fixes. true is sophisticated by

the range of situations during which PKCS#11 is

employed as an efficient security patch for one

situation might disable practicality that's very

important for an additional.

VI. THE SECURITY OF PKCS #11

Security measures are as follows

A pin is always mandatory to have an access to

private objects on token. Therefore in order to

possess a cryptographic devices which implement a

token will not be enough the pin is also an required

attribute.

For enhanced protection private keys and secret
key are marked not extractable as well as sensitive.

The thing with sensitive keys is that they cannot be

revealed in the plaintext of the token itself and

similarly not extractable keys cannot be revealed

even in encrypted form from the token.

These statements state that the main intention is

that mark the objects as non -extractable as well as

sensitive, and then any other user is not allowed to

recover the secret values. This does not implies that

our main motive is to prevent a user from using

other users object those are private, so as it appears.

The discussion between the designers concluded
that there is main issue of concern which

specifically include security of operating system,

the threat that is posed by Trojan linked library,

action that of rogue application, or the device

drivers that may or may not subvert security,

basically they do so by stealing of password .

Many reverent thoughts that relate to sniffing of

communication line to cryptographic device do

exist that in other words can be termed as

eavesdropping. So here recover of PIN, or

unauthorized access to any session where they can
delete or modify or create any object and most

importantly a token or device is impersonated all

these issues are definitely compromised. But

eventually the PKCS11 standard does claim that no

attack that are discussed above can ever

compromise key that are eventually marked as

sensitive because in the end what sensitive means is

a key will always no matter what will remain

sensitive. Exactly the same way a key that is

marked as non extractable will never be modified

to be used as extractable. Therefore along with the

examination of vulnerability of API we are
definitely interested in the property that was

claimed.

Now, any cryptographic devices which supports

this standard which we are highlighting will face

the leading threat model that are namely a fraud SO

who basically abuse authorization of position of his

as well as enabling of accessing user management

functions and the device itself. Next can be a

cheater user who basically will exploit his own

authorizing access to token aand the last being a

fraud second party which will gain access with one
or other means to the tokens.

Most importantly, the threats we discussed above

resolve by basically gaining access into session or

to a device in between a session we can elaborate

with an example such that by injection of message

 International Journal of Engineering Applied Sciences and Technology, 2018
 Vol. 3, Issue 2, ISSN No. 2455-2143, Pages 41-47
 Published Online June 2018 in IJEAST (http://www.ijeast.com)

45

onto the communicating lines or simply knowing

the password. It is very obvious that some very

popular attacks are in general about speaking , as

well as implementing dependencies as opposed to

weakness in the APIs. Completeness was the basic

definition for that.

The function of C_Login is highly vulnerable to an

comprehensive PIN or in other words the password
search since a user can try all possible passwords

.One typical defence is to keep a count of the

number of failed login attempts and ’lock’ the card

after a certain threshold of fails has been reached.

Ideally, the counter should be incremented prior to

testing the PIN and decrease only if successful. The

attacker repeatedly and intentionally masquerades

as the user an attempts to login with an incorrect

PIN. An another way to do so is making buse of

timedelays when the start up is done or in between

login attempts.

Ck_define-function(ck_rv, c_login)

{

Ck_session_handle HSESSION

Ck_user_type USERTYPE

Ck_char_ptr PPIN,

Ck_ulong ULPINLEN

};

.

Ck_define-function(ck_rv, c_InitPin)

{

Ck_session_handle HSESSION
Ck_user_type USERTYPE

Ck_ulong ULPINLEN

};

Key Management Functions

 "C_GenerateKey"

 "C_GenerateKeyPair"

 "C_WrapKey"

 "C_UnwrapKey"

 "C_DeriveKey"

C_GenerateKey
C_GenerateKey(

CK_SESSION_HANDLE hSession

CK_MECHANISM_PTR pMechanism,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulCount,

CK_OBJECT_HANDLE_PTR phKey

);

Description
This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the

Token associated with the provided session the

session state must be

either CKS_RW_USER_FUNCTIONS or

CKS_RO_USER_FUNCTIONS,otherwise the

error CKR_USER_NOT_LOGGED_IN

is returned.

C_GenerateKeyPair
CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_ATTRIBUTE_PTR pPublicKeyTemplate,

CK_ULONG ulPublicKeyAttributeCount,

CK_ATTRIBUTE_PTR pPrivateKeyTemplate,
CK_ULONG ulPrivateKeyAttributeCount,

CK_OBJECT_HANDLE_PTR phPublicKey,

CK_OBJECT_HANDLE_PTR phPrivateKey

);

Description
This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the

Token associated with the provided session the

session state must be either

CKS_RW_USER_FUNCTIONS or

CKS_RO_USER_FUNCTIONS,otherwise the
error CKR_USER_NOT_LOGGED_IN is returned.

If CKA_ID is not specified in either template then

the library sets default values for these that are the

same for both public and private object with a high

likelihood of being unique. The value is a SHA1

hash of the modulus.

C_WrapKey
C_WrapKey(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hWrappingKey,

CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pWrappedKey,

CK_ULONG_PTR pulWrappedKeyLen

);

Description
This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the

Token associated with the provided session the

session state must be either

CKS_RW_USER_FUNCTIONS or
CKS_RO_USER_FUNCTIONS,otherwise the

error CKR_USER_NOT_LOGGED_IN is returned.

C_UnwrapKey
C_UnwrapKey(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hUnwrappingKey,

CK_BYTE_PTR pWrappedKey,

CK_ULONG ulWrappedKeyLen,

CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulAttributeCount,

CK_OBJECT_HANDLE_PTR phKey

);

Description

 International Journal of Engineering Applied Sciences and Technology, 2018
 Vol. 3, Issue 2, ISSN No. 2455-2143, Pages 41-47
 Published Online June 2018 in IJEAST (http://www.ijeast.com)

46

This function operates as specified in PKCS#11.

If the CKF_LOGIN_REQUIRED flag is set for the

Token associated with the provided session the

session state must be either

CKS_RW_USER_FUNCTIONS or

CKS_RO_USER_FUNCTIONS,otherwise the

error CKR_USER_NOT_LOGGED_IN is returned.

C_DeriveKey
C_DeriveKey(

CK_SESSION_HANDLE hSession,

CK_MECHANISM_PTR pMechanism,

CK_OBJECT_HANDLE hBaseKey,

CK_ATTRIBUTE_PTR pTemplate,

CK_ULONG ulAttributeCount,

CK_OBJECT_HANDLE_PTR phKey

);
Description
This function operates as specified in PKCS#11.
If the CKF_LOGIN_REQUIRED flag is set for the

Token associated with the provided session the

session state must be either

CKS_RW_USER_FUNCTIONS or

CKS_RO_USER_FUNCTIONS,otherwisthe error

CKR_USER_NOT_LOGGED_IN is returned.

Simple derivation mechanisms are restricted to

working on secret keys of type

CKK_GENERIC_SECRET.

The functrion of C_WrapKey is basically used for

conditions like if thewre is any need to wrap secret

key with RSA public key or with any other secret
key or the last option can be of wrapping an RSA,

DSA or Deffie-hellman with secret key

VII. OPERATIONS ON PKCS#11

The first operation comes out to be of generating a

key pair. In order to generate a key pair of private

as well as public key the first condition is that

public key must be sensitive and the attribute

namely CKA_TOKEN must be set as true.

GEN_KEY_PAIR: H(NP; KP); PUB(KP); A(Np,

T_PKCS),

 SENSITIVE(NP, >T)

GEN_KEY is used to generate a symmetric key.

GEN_KEY: H(N1; K1); A(N1, T_SESSION)

The third operation is of wrapping a key which

basically means to export a key and lastly of

unwrapping a key which basically means importing

a key

WRAP(ASYMMETRIC) : h(np; pub(kp)); h(n2;

k2); wrap(np;>T),

 exportable(n2;>T) –{K2}pub(kp)

WRAP(SYMMETRIC) : h(n1; k1); h(n2; k2);

wrap(n1;>T),

 exportable(n2;>T) –{|K2|K1}.

Attacks can be basically categorized into two

streams:

Symmetric Key API Attacks
Public Key API Attacks

Symmetric Key API types are Key Conjuring, Key

Binding, Key Separation, Weaker key or algorithm,

Reduced key space, parallel search, Related Key

attack.

Wrap Decrypt Attack

First we will discuss about the Wrap decrypt attack.

Here the person intruding very well has the

knowledge about the sensitive as well as

extractable key in our case K1 and the wrap which

is meant for decrypting key which in our case is
K2. Now for a matter of fact we consider a key pair

of RSA which is k2 , a public certificate that is

included in the token will help the user to get the

key and once he receives the key can generate a

new RSA key pair Now the last key allows the

intruder to export the key namely K1 and save it

into a simple key. K1 is not actually in the

encrypted due to the wrapping key exponential of

one. Now a new key can be imported or created as

validated by the token so that the exponent key will

always remain a valid key.
The wrap/decrypt attack is as below:

 EXPORT (ASYMMETRIC): H(N2;

PUBLIC(K2)); H(N1; K1);(N1; EXPORTABLE);

(N2; EXCHANGE_KEY) [{K1}PUB(K2)]

 GET_EKEY [{K1}PUB(K2)] -

{K1}PUB(K2)

 ADECRYPT H(N2;

PUB(K2));{K1}PUB(K2)

 (N2, EXCHANGE_KEY) – K1

We must not use a key to be useful for both

wrapping and decrypting because these add as

attributes to set conflicts.

VIII. CONCLUSION

 International Journal of Engineering Applied Sciences and Technology, 2018
 Vol. 3, Issue 2, ISSN No. 2455-2143, Pages 41-47
 Published Online June 2018 in IJEAST (http://www.ijeast.com)

47

When considering the case of wrapped keys, with

the aid of format change of external key token, we

can easily deal with both Key Conjuring and Key

Binding attacks. The introduction of proposals like

[1] and [2] and under the tutelage and guidance

from such prominent organizations like ANSI

Financial Services Committee will aid in

addressing the interoperability barriers. By
executing a known implementation which prohibits

the contrasting usage of key attributes (e.g.

CKA_WRAP and CKA_DECRYPT), the Key

Separation issue can be relatively dealt with. There

is, however, a fundamental flaw in the design of

wrapped key that it does not contain any separation

information. Thus, the Key Conjuring and Key

Binding attacks must be dealt with the help of a

completely new external key token format. We can

prevent the Weaker Key/Algorithm attack by

concentrating on the fact that in no case should a

key ever be protected/wrapped with the aid of a
weaker algorithm/key. Additionally, protection

against the Reduced Key Search attack can be

achieved by accurately using the ’unextractable’

and ’never extractable’ flags. For future purposes,

we will like to concentrate upon the matter that

whether the mechanisms

CKM_EXTRACT_KEY_FROM_KEY and

CKM_XOR_BASE_AND_DATA (especially in its

current format) should be considered or not for the

API, as they could lead to a rise in Related Key and

Parallel Search attacks. In order to prevent Private
Key Modification attack, we can either take the aid

of consistency check, thus ensuring key component

integrity remains intact, or re-writing the format of

the encrypted RSA key token which achieves

integrity through cryptographic algorithms, like

MAC over the token or encrypted hashing. We

have seen the perils of using raw RSA

functionality, which can lead to Small Public

Exponent with No Padding attacks. The practical

answer would be to impose the usage of a known

padding configuration. The issue of backwards

compatibility is yet to be dealt with. In this case,
any device that uses this method to export a key

would be left exposed to attack, so interoperability

should not be a detriment. We need to set a

standard for authenticating both public keys and

wrapped keys (for import and export), in order to

successfully deal with the threat of Trojan Public

Key and Trojan Wrapped Key attacks.

IX. REFERENCES

[Jolyon Clulow. On the security of pkcs#11. In In
proceedings of the 5th international workshop on

cryptographic hardware and embedded systems

(Ches'03), volume 2779 of lncs, pages

411{425.Springer-Verlag, 2003.

Riccardo Focardi, Flaminia L. Luccio, and Graham

Steel. Foundations of security analysis and design

vi. chapter An Introduction to Security API

Analysis, pages 35{65. Springer-Verlag,

Berlin,Heidelberg, 2011.

SafeNet inc. Attacking and _xing pkcs#11 security

tokens a response By safenet.

http://secgroup.ext.dsi.unive.it/
wpcontent/uploads/2010/10/Reponse-by-

SafeNet.pdf.

RSA-laboratories. Pkcs#11: the cryptographic

token interface standard.

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/ v2-

20/pkcs-11v2-20.pdf, 2004.

Graham Steel. Cryptographic key management

apis. http://www.lsv.ens-

cachan.fr/\~steel/teaching/pkcs11/ FMSS-

crypto.pdf, 2013.

