
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 45-49

 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

45

QUINSERTION: A HYBRID SORTING

TECHNIQUE

 Pavi Saraswat Anurag Yadav

 Department of IT Department of IT

 Amity University, Sector-125 Amity University, Sector-125

 Noida India Noida India

Abstract— Sorting is the basic problem in computer science.

In this we have to rearrange data like numerical or

alphabetical either in ascending or in descending order.

There are many sorting algorithms in literature like Merge

sort, Heap sort, Quick sort, Insertion sort, Smooth sort

and many more. There is a drawback in quick sort that its

complexity is O(n
2
) when data is already in sorted manner.

To overcome this problem we are introducing an

algorithm called Quinsertion sort which is combination of

quick sort and insertion sort.

Keywords— Sorting Algorithm, Quick Sort, Insertion Sort,

Data Structures, Hybrid Approach, Time Complexity

I. INTRODUCTION

Sorting has been a thoughtful area for the algorithmic

researchers. And a lot of resources are invested to put forward

a more working sorting algorithm. For this reason many

existing sorting algorithms were experiential in terms of the

efficiency of the algorithmic complexity [1]. Quicksort [2]

was observed to be both cost-effective and efficient. A lot of

algorithms are very well recognized for sorting the unordered

lists. Most significant of them are Heap sort, Bubble sort,

Quicksort, and Insertion sort [3]. Efficient sorting is

significant to optimize the utilization of other algorithms that

necessitate sorted lists to work in the approved manner; it is

also often in producing human-readable output [4]. The

insertion sort is used in combination with quick sort as the

time complexity of the insertion sort for best case is O(n)

which is linear. Insertion sorting algorithm is another

important algorithm, used for sorting small lists. But the study

shows that the EIS is more competent, in theory, logically, and

practically as compared to the real insertion sorting algorithm

and also good for sorting larger lists. Sorting has been well

thought-out as an elementary problem in the study of

algorithms, that due to many reasons:

 The need to sort information is intrinsic in many

applications.

 Algorithms often use sorting as a key subroutine and

competent sorting is important to optimize the

utilization of new algorithms that necessitate sorted

lists to work appropriately.

The output should satisfy 2 major conditions:

 The output is a combination, or reordering, of the

input.

 The output is in non decreasing order.

The rest of the paper is organized as follows section II

contains Quick sort, Section III contains Insertion sort,

section IV contains proposed Quinsertion sort Algorithm,

section V contains Results and section VI contains

Conclusion.

II. QUICK SORT

An array having large number of elements with a random

order needs to be ordered in an ascending or descending

manner. Quick sort can deal with this problem by using two

key ideas: The first idea of Quick sort is that the problem can

be divided and solved. The problem can be broken into

smaller arrays, and those smaller arrays can be sorted easily.

This is done by choosing an element from the array as pivot

element, and reordering the array so that all elements which

are smaller than the pivot appear before the pivot and all

elements which are larger than the pivot come after it. This

process is called partitioning process. Second, by partitioning

the array into two sub parts, then partitioning those two parts

recursively into arrays of single elements, two already sorted

arrays can be concatenated on either side of the choosen pivot

element into one array, as an array with one element is already

sorted. Refer to the following pseudocode:

Fig. 1. Pseudocode for Quick Sort Algorith

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 45-49

 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

46

Fig. 2. Pseudocode of the partition step of quick sort

As the pseudocode shows, after a new pivot element is

randomly chosen (lines 3-4), the array is broken up into a left

half and a right half and sorted recursively (lines 5-6). In the

partition algorithm, the two sub arrays are compared to

determine how they should be arranged (lines 12-15). In the

following examples, using the given input, the partitioning of

the array (Figure 3) and how the sub arrays are concatenated

back into a sorted array (Figure 4) are illustrated.

Inputs – A: array of n elements (33 55 77 11 66 88 22 44)

Output – array A in ascending order

Fig. 3. Shows the partitioning of the input array into single

element arrays. The red element is the pivot element of the array.

Fig. 4. From the bottom up, shows the concatenating of the single

element arrays. The red element is the pivot element.

As the example shows, array A is broken in half based on the

pivot until they are in arrays of only a single element, then

those single elements are concatenated together until they

form a single sorted array in ascending order.

III. INSERTION SORT

The insertion sort algorithm works as follows: Consider an
array A[0..n-1] with n- elements. This algorithm scans A from
A[0] to A[n-1], inserting each element A[k] into its proper
position in the previously sorted sub array A[0], A[1],
……….A[k-1]. This can be accomplished by comparing A[k]
with A[k-1], A[k] with A[k- 2] and so on, until we found an
element A[j] such that A[j]<=A[k]. Then each of the elements
A[k-1],A[k- 2]…..A[j+1] is moved forward one location , and
A[k] is the inserted in the j+1st position in the array.

Here is a pseudo code of this algorithm:

Fig.5. Pseudo code of insertion sort

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 45-49

 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

47

A. Number of comparisions

The basic operation of this algorithm is the key comparison. In

this algorithm, the number of key comparisons depends on the

nature of the input. The worst case occurs, when input of an array

are of reverse order. The number of key comparisons for such an

input is

B. Number of movements

The number of key movement is , M(n) = 1 + 2 + 3 + ……+ (n-1)

= n(n-1) / 2 . Since, the number of keys that needs to be moved in

i-th iteration is i.

C. Number of swaps

The total number of swaps when the array are of reverse order, S

(n) = 0

IV. QUINSERTION ALGORITHM

As we discussed above that quick sort is having a drawback

that its performance complexity is O (n
2
) when data entered is

already in sorted manner so it’s the problem of sorting

algorithm to minimize this problem we are introducing a

algorithm called quinsertion sort which is combination of

quick sort and insertion sort. As it is the property of insertion

sort that when data is already in sorted manner it will only

perform n comparisons which is exponentially less than of

quick sort so we can combine these two algorithms which can

result in better complexity of quick sort.

Here is a code sample of Quinsertion sort algorithm in C#.

Here in this code we break the array of inputs around the size

of 9 because according to literature if we use hybrid

approaches then the insertion sort gives the best result at this

size only.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 45-49

 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

48

V. COMPARITIVE RESULTS

Quicksort is a recognized sorting algorithm proposed by

Hoare [5] that on average basis makes O (nlogn) comparisons

to sort n items. However it makes Θ (n2) comparisons in its

worst case. Quicksort is a comparison sort and, in proficient

implementations, is not a stable sort. Stable sorting algorithms

maintain the relative order of records which have equal keys.

This means, a sorting algorithm is called stable if there are two

items X and Y with the equal key values and with X present

before Y in the given list then X will come before Y in the

final sorted list [6, 7]. As mentioned in [8], there are three well

known divide-and-conquer approaches for sorting a sub array

A[p..r]:-

 Divide: The array A[p..r] is divided into two sub

arrays (non empty), A[p..q] And A [q+1..r] such that

every element of A[p..q] is less than or equal to every

element of A[q+1..r]. q is computed as a part of

partitioning procedure.

 Conquer: Now sub arrays A[p..q] and A[q+1..r] are

sorted recursively.

 Combine: Since the sub arrays are sorted, no effort is

required to combine them, and the entire array A is

sorted now.

The steps of Quick sort [2, 9] are:

 Pick an element as pivot from the given list.

 Arrange the list as all elements less than to pivot is at

one side and greater elements are at others. Elements

equal to pivot can come to either side because Quick

Sort is not stable. After this, the pivot is at its final

position. This is called the partition procedure.

 Now recursively sort the two sub-lists of elements.

The code of the Quick sort algorithm has two parts. The first

part is a method named quicksort, which places the pivot at its

correct position and divides the array into two parts

recursively [10]. The other part is the function named

“partition” which divides the part of the array between indexes

“left” and “right”, inclusively, by placing all the elements less

than or equal to array named “pivotIndex” to the starting of

the sub array, leaving all the elements greater than pivot after

them. It for the time being moves the pivot to the last of the

sub array, so it doesn’t get in the way to create any conflict.

Because it only uses swapping, the final list has exactly the

same elements as that of original one [11, 12]. Note that an

element may be swapped many times before getting its final

position. The main differences between QUINSERTION sort

algorithm and Quick sort algorithm are as follows:

 The QUINSERTION sort algorithm is stable in the

sense that it maintains the order of elements with

equal key value while Quicksort doesn’t.

 In its best case, the QUINSERTION algorithm makes

O(n) comparisons while Quicksort makes O(nlgn)

comparisons to sort an average array of size n.

 The QUINSERTION algorithm is a bit faster than

Quick sort when handling large sized input (n) arrays,

and when the values (max) and (min) are much less

than the n. In such case, the time complexity in

average and worst cases of the QUINSERTION

algorithm reaches O(n), while Quicksort takes O(nlg

n) in the average case, and O (n
2
) in the worst case.

 The QUINSERTION algorithm is to be used to sort

an array of dissimilar elements. In such case,

algorithm takes O (n+max+min) time only.

 The QUINSERTION algorithm improves the way

Quicksort divides the given array. Quicksort moves

the pivot to its correct position and then divides the

array into two sub parts, and recursively follows the

same procedure, until it reaches the base case. Unlike

this, the QUINSERTION algorithm divides the array

into three parts (arrays), positive, negative, and

frequent elements, and swaps each element to its

correct position in a single pass.

Table -1 Running time of quicksort and Quinsertion sort

Size of input Running time of

quick sort

Running time of

quinsertion sort

1000 75ms 46ms

2000 78ms 49ms

5000 89ms 58ms

Table 1 shows the average running time for quinsertion and
quick sort for different size of inputs.

VI. CONCLUSION

The quinsertion sort is an enhancement to quick sort which is

trying to resolve the problem of quick sort which is that it

takes maximum time complexity to sort already sorted data.

Quick sort takes O(n
2
) performance complexity for its worst

case that is to sort already sorted data and quinsertion takes

around O(n) performance complexity to sort already sorted

data.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 3, ISSN No. 2455-2143, Pages 45-49

 Published Online December – January. 2016 in IJEAST (http://www.ijeast.com)

49

VII. REFERENCE

[1] Friend E., “Sorting on Electronic Computer Systems,”

Computer Journal of ACM, vol. 3, no. 3, pp. 134-168,
1956.

[2] Hoare R., “Quicksort,” The Computer Journal, vol. 5, no.
1, pp. 10-15, 1962.

[3] Box R. and Lacey S., “A Fast Easy Sort,” Computer
Journal of Byte Magazine, vol. 16, no. 4, pp. 315-321,
1991.

[4] Deitel H. and Deitel P., C++ How to Program, Prentice
Hall, 2001.

[5] Hoare R., “Quicksort,” The Computer Journal, vol. 5, no.
1, pp. 10-15, 1962.

[6] Aho A., Hopcroft J., and Ullman J., The Design and
Analysis of Computer Algorithms, Addison Wesley,
1974.

[7] Knuth E., The Art of Computer Programming Sorting and
Searching, Addison Wesley, 1998.

[8] Weiss M., Data Structures and Problem Solving Using
Java, Addison Wesley, 2002.

[9] Levitin A., Introduction to the Design and Analysis of
Algorithms, Addison Wesley, 2007.

[10] Moller F., Analysis of Quicksort, McGraw Hill, 2001.

[11] Nyhoff L., An Introduction to Data Structures, McGraw
Hill, 1987.

[12] Thorup M., “Randomized Sorting in O(n log log n) Time
and Linear Space Using Addition Shift, and Bit Wise
Boolean Operations,” Computer Journal of Algorithms,
vol. 42, no. 2, pp. 205- 230, 2002.

