
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 51-54
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

51

PASSWORD HASHING

Pankit Arora Akshath Dhar

 Department of IT Department of IT

 Amity University, Noida, India Amity University, Noida, India

Abstract— Passwords play a critical role in online

authentication. Unfortunately, passwords suffer from two

seemingly intractable problems: password cracking and

password theft. In this paper, we propose PasswordAgent,

a new password hashing mechanism that utilizes both a

salt repository and a browser plug-in to secure web logins

with strong passwords. Password hashing is a technique

that allows users to remember simple low-entropy

passwords and have them hashed to create high-entropy

secure passwords. PasswordAgent generates strong

passwords by enhancing the hash function with a large

random salt. With the support of a salt repository, it gains

a much stronger security guarantee than existing

mechanisms. PasswordAgent is less vulnerable to offline

attacks, and it provides stronger protection against

password theft. Moreover, PasswordAgent offers some

usability advantages over existing hash-based mechanisms,

while maintaining users’ familiar password entry

paradigm. We build a prototype of PasswordAgent and

conduct usability experiments.

Keywords— Passwords, Password Hashing, Account

Verification

I. INTRODUCTION

HASHMETHODS

Hash methods are one-way features. Any quantity of

information can be modified into an irreversible fixed-length

"fingerprint" using these features. They also have the feature

that if the feedback changes by even a small bit, the causing

hash is absolutely distinct. This is excellent for defending

security passwords, because we want to shop security

passwords in a type that defends them even if the security

password information file itself is affected, but
simultaneously, we need to be able to confirm that a

customer's security password is appropriate.

ACCOUNT VERIFICATION PROCESS
The common work-flow for account verification and signing

up in a hash-based account program is as follows:

i. An account is created by the user.

ii. The database stores their password after hashing. The

hard drive never stores the plain-text (unencrypted)

password.

iii. The hash of the password they entered is checked

against the hash of their real password, whenever the

user attempts to login.

iv. Access is granted to the user if the hashes match.

Else, the user is asked to enter valid login credentials.
v. Steps iii and iv repeat whenever someone tries to

login to their account.

In phase 4, never tell the customer if it was the login name or

security password they got incorrect. Always show a general

concept like "Invalid login name or security password." for

avoiding attackors from enumerating legitimate usernames

without understanding their security passwords.

Fig 1.2 Cryptographic hash Functions

It should be pointed out that the hash-functions used to secure

passwords are not the identical to the hash-functions you could

possibly have seen in a D.S course. Only cryptographic hash-

functions could be made use of to apply password-hashing.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 51-54
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

52

"Hash-functions like SHA256, SHA512, RipeMD, and

WHIRLPOOL are cryptographic hash features."

"It's basic to think that all you have to do is run the protection

password through a cryptographic hash operate & users'

protection passwords will be protected. This is far from the

fact. There are many methods to restore protection passwords

from basically hashes very easily. There are several easy-to-

implement methods that create these "attacks" much less

efficient. To encourage the need for these methods, consider
this very web page. On the first web page, you can publish a

record of hashes to be damaged, and get outcomes in less than

a second. Clearly, basically hashing the protection password

does not fulfill our needs for protection.

II. METHODOLOGY

2.1 HASH CRACKING

2.1.1 Dictionary and Brute Force Attacks

"A dictionary strike uses a computer file that contains words,

terms & other post that can be used as a security password.

Every single term in the computer file is hashed and then
compared to security password hash. If they coordinate, that

term is the security password. Further handling is often used to

dictionary information, such as changing terms with their "leet

speak" counterparts ("hello" becomes "h3110"), to make them

more effective."

"A brute-force enemy tries each possible mixture of figures up

to a given length. These strikes are very computationally

expensive, and are usually the least effective with regards to

hashes damaged per processer time, but they will always

gradually look for the security password. Security passwords

should be lengthy enough that searching through all possible

personality post to discover it will take a lengthy time to be
beneficial."

2.1.2 Lookup Tables

Lookup-Tables are an efficient means for breaking many

hashes of the similar kind very easily. The common concept is

to pre-compute the hashes of the security passwords in a

security password vocabulary and shop them, and their

corresponding security password, in a search desk information

framework. A good execution of a search desk can procedure

thousands of hash queries per second, even when they contain
many immeasurable hashes.

 The attacker doesn't have to pre-compute a lookUp

table for applying a dictionary or brute-force attack.

 First of all, a lookUp desk is designed by the enemy

which charts the record of the customers having that

hash to each security password hash including in the

data source. The enemy then hashes each security
password think and uses the search desk to get a

record of customers whose security password was the

assailant's think. This strike is especially efficient

because it is typical for many customers to have the

same security password.

2.1.3

 Rainbow Tables : "Rainbow platforms are a time-
memory trade-off strategy. They are like search

platforms, except that they compromise hash

breaking rate to make the search platforms more

compact." Because they are more compact, the
alternatives to more hashes can be saved in the same

amount of area, making them more efficient.

Spectrum platforms that can break any md5 hash of a

security password up to 8 figures are available more

time.

2.2 ADDING SALT

Fig 2.3 Adding Salt

Lookup-tables & rainbow-tables perform only when each

security password is hashed in the identical way.two
customers will have identical hashes if they have identical

security passwords. So the hashes need to be randomized to

avoid this strike.

This can be done by appending or prepending a unique

sequence, known as a salt, to the security password before

hashing. As proven in the example above, this creates the

same security password hash into a absolutely different

sequence whenever. To examine if a security password is

appropriate, we need the salt, so it is usually saved in the

customer consideration data source along with the hash, or as

aspect of the hash sequence itself.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 51-54
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

53

"The salt does not need to be key. Just by randomizing the

hashes, search platforms, opposite search platforms, and

spectrum platforms become worthless."

2.3 SALT IMPLEMENTATION ERRORS

1) Salt Reuse
Using same salt in each hash is the most typical error. This

causes ineffectively as the two customers will have the same

hash for same security passwords. An enemy can still use a

reverse-lookUp-Table strike to run a dictionary strike on every
hash simultaneously.

"A new unique salt must be produced every time a customer

makes an consideration or changes their security password."

2) Short Salt
An attackor can quickly develop a search desk for any

possible brief salt. For eg.," if the sodium has only 3 ASCII

figures, therr are only "95x95x95 = 857,375 possible salts".

This might seem to be a lot, but if each search desk contains

only 1MB of the most typical security passwords, jointly they

will be only 837GB."
This is why, the login name must not be applied as a salt. They

might be exclusive to a particular support, but they are

foreseeable and often recycled for records on other solutions.

"To create it difficult for an enemy to create a search desk for

every possible salt, the salt must be lengthy. A excellent

principle is to use a salt that is the same dimension as the

outcome of the hash operate. For example, the outcome of

SHA256 is 256 pieces (32 bytes), so the salt should be at least

32 exclusive bytes."

2.4 HASH COLLISIONS

Fig 2.4 Hash Collisions

There shall be some information hashing into the same

sequence as hash-functions map irrelavent quantities of

information to fixed-length post. Cryptographic hash features

create these crashes very hard to discover. Every now and

then, cryptographers discover "attacks" on hash features that

create discovering collisions simpler. A latest eg. is the MD5

hash operate, for which collisions have actually been

discovered.

Collision strikes are a indication that it can be more likely for

a sequence except the customer's security password to have

the identical hash. However, discovering crashes in even a

poor hash operate like MD5 needs a lot of devoted processing

energy, so it is very unlikely that these crashes will occur "by

accident" in exercise. Nevertheless, it's a smart concept "to use

a more protected hash operate like SHA256, SHA512,

RipeMD, or WHIRLPOOL if possible."

2.5 PROPER HASHING TECHNIQUES

Fig 2.5 Software Requirements

The salt needs to be exclusive per-user per-password. Every

time a customer makes an consideration or changes their

security password, the security password should be hashed
using a new exclusive salt. Never recycling a salt. The salt

also needs to be lengthy, so that there are many possible salt.

As a concept, make your salt is at least provided that the hash

function's outcome. The salt should be saved in the customer

consideration desk plus the hash.

TO STORE A PASSWORD
i. Create a lengthy unique salt using a CSPRNG.

ii. Prepend the salt to the security password and hash it

with a conventional cryptgraphic hash operate such

as SHA256.

iii. Conserve both the salt and the hash in the customer's

data source history.

TO VALIDATE A PASSWORD
i. Access the customer's salt and hash from the data

source.

ii. Prepend the salt to the given security password and

hash it using the same hash operate.

iii. Evaluate the hash of the given security password with

the hash from the data source. If they coordinate, the

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 10, ISSN No. 2455-2143, Pages 51-54
 Published Online August - September 2016 in IJEAST (http://www.ijeast.com)

54

security password is appropriate. Otherwise, the

security password is wrong.

Fig 2.6 DFD

III. CONCLUSION

3.1 JAVA CODEOUTPUT

Fig 3.1 Code1

Fig 3.2 Code2

Fig 3.3 Code3

The report explains that how password hashing works exactly.

All the concepts and topics have been included in the project

report. Passwords should be hashed with either PBKDF2,

bcrypt or scrypt, MD-5 and SHA-3 should never be used for

password hashing and SHA-1/2(password+salt) are a big no-

no as well. Currently the most vetted hashing algorithm

providing most security is bcrypt. PBKDF2 isn’t bad either,

but if you can use bcrypt you should. Scrypt, while still

considered very secure, hasn’t been around for a long time, so

it doesn’t get recommended a lot, but it seems it will become

the successor of bcrypt, once it has been around a bit longer.

Note that while there are some caveats and password
bruteforcing strategies for PBKDF2 and bcrypt, they are still

considered unfeasable for strong passwords (passwords longer

than 8 characters, containing numbers, letters, signs and at

least one capital letter).

IV. REFERENCE

[1] "https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&s

ource=images&cd=&cad=rja&uact=8&ved=0CAYQjB1q

FQoTCPLb0Zjw3MYCFUHnpgodiisAkw&url=http%3A

%2F%2Fomaristraker.blogspot.com%2F&ei=Bi-

mVfLAPMHOmwWK14CYCQ&bvm=bv.97653015,d.d
GY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-

sQ&ust=1437040739403191"

[2] "security.stackexchange.com/questions/.../how-to-

securely-hash-password..."

[3] "www.codeproject.com"

[4] "https://en.wikipedia.org/wiki/Cryptographic_hash_functi

on"

[5] "https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&s
ource=images&cd=&cad=rja&uact=8&ved=0CAYQjB1q

FQoTCM_YkLjx3MYCFaI0pgodx3cAfA&url=http%3A

%2F%2Fonewebsql.com%2Fblog%2Fhow-to-store-

passwords&ei=VTCmVY_aHKLpmAXH74HgBw&bvm

=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl6

5nbpbXPTqO-sQ&ust=1437040739403191"

[6] https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&so

urce=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qF

QoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%

2F%2Fblog.codinghorror.com%2Fspeed-

hashing%2F&ei=fS-

mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY

&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-

sQ&ust=1437040739403191

[7] https://media.blackhat.com/us-13/US-13-Aumasson-

Password-Hashing-the-Future-is-Now-WP.pdf

[8] https://www.usenix.org/legacy/event/lisa09/tech/full_pape

rs/strahs.pdf

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB1qFQoTCJytltHw3MYCFePYpgodLXYISg&url=http%3A%2F%2Fblog.codinghorror.com%2Fspeed-hashing%2F&ei=fS-mVdz6IeOxmwWt7KHQBA&bvm=bv.97653015,d.dGY&psig=AFQjCNFxSDotyF6fXyPl65nbpbXPTqO-sQ&ust=1437040739403191
https://media.blackhat.com/us-13/US-13-Aumasson-Password-Hashing-the-Future-is-Now-WP.pdf
https://media.blackhat.com/us-13/US-13-Aumasson-Password-Hashing-the-Future-is-Now-WP.pdf

