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Abstract— Identifying frequent itemsets from a given 

database is a subject of research. A number of algo-

rithms have been proposed for mining frequent itemsets 

from the given database. Most of these approaches enu-

merate candidate itemsets, determine their support and 

prune candidates that fail to reach the user-specified 

minimum support. This paper proposes the concept of 

intersecting transactions for finding frequent itemsets. 

The proposed approach of intersection makes use of 

closed itemsets to store the values of frequent itemsets. 

The proposed algorithm makes use of prefix data struc-

ture to handle the transactions. The prefix tree has cer-

tain problems associated with it i.e. large size of prefix 

tree. Large prefix trees not only require more memory 

space but at the same time handling large tree becomes 

difficult. Thus an attempt has been made to reduce the 

total number of nodes which lead to the reduced size 

prefix tree. The results of the proposed algorithm have 

been compared with the existing algorithms on both syn-

thetic and real datasets. 

Keywords— frequent itemset, closed frequent itemset, inter-

section, enumeration, prefix tree  

I. INTRODUCTION 

It is hardly an exaggeration that the popular research ar-

ea of data mining was initiated by the tasks of frequent 
itemset mining [1, 2, 3, 4] and association rule induction 

[12]. At least these tasks have a strong, long-standing tradi-

tion in data mining and knowledge discovery in databases 

and hence triggered abundance of publications in data min-

ing conferences and journals. Most of these approaches 

enumerate candidate itemsets, determine their support and 

prune candidates that fail to reach the user-specified mini-

mum support. This paper proposes the use of intersection 

approach for identifying frequent itemsets from the given 

database. Rest of the paper is structured as follows: Section 

2 describes some of the existing algorithms for identifying 
frequent itemsets; section 3 describes the proposed algo-

rithm, section 4 gives details on the performance evaluation 

for both proposed algorithm and existing algorithms, section 

5 discusses some of the application areas and finally con-

cluding remarks are given. 

II. EXISTING ALGORITHM 

A number of algorithms have been proposed for frequent 

itemset mining [1, 2, 3, 4]. Algorithms have also been pro-

posed for finding maximal or closed frequent itemsets 

which can be used in finding frequent itemsets. Apriori al-

gorithm [9] works by generating the candidate itemsets 

while FP-growth [6] works by pruning the infrequent 

itemsets. Eclat [10] searches in a depth first search manner 

to find all the frequent itemsets. Improved Carpenter algo-

rithm [8] uses table-based implementation which is more 

efficient then list based implementation used by its earlier 
version [8]. The IsTa algorithm [5] uses intersection tech-

nique to identify frequent itemsets. 

IsTa algorithm uses prefix tree data structure to maintain 

a repository of frequent itemsets which is updated be inter-

secting it with new transaction. In the intersection approach 

after adding the transaction to the prefix tree we need to 

perform the intersection of currently added transaction with 

all the existing transaction in the prefix tree.   

For compressing the result of generated frequent 

itemsets, closed or maximal itemset can be used. Each fre-

quent itemset has at least one maximal superset and also 
have a uniquely determined closed superset which can also 

preserve the knowledge of support value. Closed item set 

comes as a better alternate to compress the frequent itemset 

output.   

III. PROPOSED ALGORITHM - NEWISTA 

This section discusses the proposed algorithm NewIsTa 

that uses the concept of intersecting transactions. For pro-

cessing the datasets with the help of the proposed algorithm 

NewIsTa, firstly items within each transaction should be 

sorted followed by the transaction sorting. Items are sorted 

on the basis of decreasing initial support values and transac-

tions are sorted based on their size (number of items in it).  

Main reason behind the sorting of transaction based on their 

size is that if heavy transactions are processed earlier then 
the prefix tree becomes larger at initial level which makes it 

handling difficult. If smaller size transactions are processed 

initially then prefix tree will be small at initial level and can 

be handled easily. 

NewIsTa algorithm tries to overcome the shortcomings 

of the IsTa algorithm by transposing the transaction matrix 

and by altering the item ordering from increasing support 
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count to decreasing support count which helps in making 

the prefix tree structure more efficient. The working of pro-

posed algorithm is discussed in Figure-3.1. 

void new_IsTa (Transaction *T, Item *I, Pnode *root) { 
*T=NULL;//initialize transaction list to null 
*I=NULL;  //initialize item list to null 
*root=NULL;//initialize prefix tree to null 
   for (each transaction)  { 
         string st=read_file(); //File read 

         gettrans (st);  
    } //initialize *T and *I 
copy_supp(*T and *I);  // update support for each transaction 
sort I and each i in *T i.e. sort_items(*I); 
sort transactions in *T by calling function sort_transactions(*T, 
*I); 
get counter value for each t in *T by calling functional module 
get_counter (*T) ; 

make_matix(*T,*I) //enumerate the transaction dataset 
for ( each t in *T){ 
Pnode *p=prefix (ti); // add ti to prefix tree end 
Findintersection(*p);  //intersection and prefix tree 
updation 
} //for loop closed 
report(Pnode *root); //report and display prefix tree structure. 
} //program closed 

 

Figure-3.1 NewIsTa algorithm 

 
In NewIsTa three pointer structures are maintained, *T 

point towards the transaction list, *I points to the item list 

which contains distinct items in transaction database and 

*root which point towards the root of prefix tree. Initially, 

the input transaction file is read, each line of which repre-

sents a transaction. Transaction is taken in the form of a 

string and function gettrans() is called for each transaction 

string. Figure-3.2 describes function gettrans (). 

void gettrans(string st){ 
for (each item i in st){ 
if(*T =NULL) 
    initialize *T with the first item of st; 
else{ 
    go to the end of *T                       
for(each item in t){ 

    go to the end of item list in last 
    transaction in *T list and add I;  }// for closed 
  }    //else closed 
   add item to symbol list;           
}   
} //program closed 
 

Figure-3.2 Function gettrans 

 

Figure-3.2 gives the functionality of gettrans(). It adds 

the transaction to the transaction list. It also maintains a list 

of distinct items for the transaction database. The given 

function gettrans() search the existing list of item and adds 

the item if it is not in the list and if it already exists in the 

list then increment its support value. This function also adds 

support value for each item in the item list. 

After processing the input file, transaction list contain 

transactions and item list contain the list of distinct item 
with their support value. To add support for each item in the 

transaction list function copy_supp() is executed, details of 

which are given in Figure 3.3.  

void copy_cupp(*T and *I){ 
for (each transaction in *T) { 
t=current transaction; 
for (each item in t){ 
search the item list and add support for the item; }// for closed 

}//for closed 
} //program closed 

 

Figure-3.3 Function copy_supp 

 

Figure-3.3 gives function copy_supp() to add the support 
value of the items in transaction list from item list. This 

support value of items will be used further to sort the items 

within each transaction. 

After getting the transaction and item list, sorting is done 

for both the lists. Bubble sort is used to sort the items ac-

cording to their initial support value. We are using the de-

creasing orientation for the item based on their initial sup-

port value. Similarly transactions are sorted on the basis 

their size (total number of items present in the transaction). 

Function sort_transcation() is used for this purpose and this 

function also make use of bubble sort. Figure-3.4 describe 
the working of sort_transactions(). 

void sort_transactions(*T and *I){ 

for (each t in *T) { 
for (each item i in t) { 
for (i+1 to the end of item list for t) 
if( supp( i)<supp(i+1)) 
      change their respective positions; 
  }//inner for loop closed 
}// outer for loop closed 
for (each t in *T) { 
for (t+1 to the end of *T) { 

if (size ( t)>size (t+1)) 
       change their respective positions; }//inner for loop closed 
}// outer for loop closed 
                  
}//program closed 
 

Figure-3.4 Function sort_transactions 

 

After passing the transaction list to the above function, 

the sorted list of transactional database is obtained.  

For making the prefix tree out from this database we use 

prefix() which takes the sorted *T and *I as input and make 

a prefix tree from the transaction and intersection data. Its 

structure and functionality is explained in Figure-3.5 

void prefix (*T, *I){ 
for (each transaction t in *T) { 
if (*root is not initialized) { 
initialize the *root of prefix tree; } 
else { 
go to the end of prefix tree and add t;} 
call findintersection( t, *root);//pass the current prefix tree 
}// for closed 

}//program closed 

 

Figure-3.5 Function prefix 
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void findintersection (transaction t, Pnode *root) { 
for (each transaction tj in *T) { 
for (each item i in t) { 
for (each item j in tj) { 

if (i==j){ 
     add to the intersection list;}// if closed 
}//innermost for loop closed 
}// middle for loop closed 
}// outer for loop closed  
for (each item li in intersection list){ 
    for (each item i in tj) { 
if (li is equal to i) Count++; //count is the measure of matches of 

intersection list items with prefix tree transaction items 
if (intersection list is empty) { 
do nothing; } // first case closed 
else if (count is equal to size of tj) { 
increase support of all items in tj; }// second case closed 
elseif (count<size(tj) && (count is equal to  intersection list 
size)) 
{ for (i<=count) 

increase support of item in tj; 
}// third case closed 
else if (count<size(tj) &&(! (count is equal  to intersection 
list size))) 
{ for (i<=count) 
increase support of item in tj; 
add rest of items in intersection list as branch in the path of tj; 
}// fourth case closed 

else (count==0) { 
add intersection list items as separate  branch in prefix tree; 
} // fifth case closed 
}// for loop closed (i.e. tj)s 
}//program closed 
 

Figure-3.6 Function findintersection 

 

Function prefix() add the transaction to the prefix tree 

and then pass the prefix tree pointer to the findintersection() 

along with the currently added transaction. 

Figure-3.6 describes the function Findintersection() 

which process the prefix tree and find the intersection of 

currently added transaction with all the existing transactions 

in the prefix tree. This function generates an intersection list 
which contains the list of intersecting items and then the 

desired updating in the prefix tree is applied. 

3.1 Inserting a new transaction to the prefix 

tree 

Let the prefix tree contains (n-1) transactions which 

ranges from t1 to tn-1. For adding the nth transaction to the 

prefix tree, we need to carry out the intersection of nth 

transaction with all the existing transaction in the prefix 

tree. Let the nth transaction is denoted by tn, then for inter-
secting tn with tk where k ranges from 1 to (n-1) following 

set of rules are used.  

For identifying common items between transaction tn 

and tk and storing them in set S following set of rules are 

used. If there is no item in common in tn and tk (S is empty) 

then do nothing. If there exists a complete branch in the 

prefix tree which contain all the intersected nodes (all the 

items of S) then update the status of each node in that 

branch. If a branch contains all items of intersection and still 

have child node that are not in intersection then update the 

support of intersecting nodes in that branch and do not per-

form the updating of support value to the child node those 

are not in the intersection. 

If there exists only initial i items of the set S in continui-

ty then 

(a) Update the support of those nodes and assume the last 
node as k.  

(b) Make a new branch out of the remaining item from in-

tersection with support value   of one. 

(c) Add them as the sibling of node k 

If no branch contains the intersected items then make a 

new branch out of the items in S and add that as the com-

pletely new branch in the prefix tree at level one.  

For illustrating the proposed algorithm discussed in Fig-

ure-3.1, dataset given in Table-3.1 is used that consists of 5 

transactions. 

Table-3.1 Sample dataset 
 

Transaction id Items 

t1 a, b, c, d, e 

t2 a, b, c, e 

t3 a, b, g 

t4 c, d, f 

t5 a, d 

 

According to the proposed algorithm, function gettrans() 

takes Table-3.1 as input and generate Transcaton List and 

Item List. Item list stores all the distinct items in the dataset 

along with their support value and transaction list contains 

all the transactions. From the dataset given in Table-3.1, 

initial support value stored for each item in the item list is 

given by Table 3.2.  

Table-3.2 Initial support of items 

 

Item Initial support 

a 4 

b 3 

c 3 

d 3 

e  2 

f  1 

g 1 

 

Function sort_transactions() given in Figure-3.4 takes trans-

action list as input, sort the items within each transaction 

and produce output which is given in Table-3.3. Function 
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sort_transactions() uses decreasing ordering for the items. 

Finally, the items in the Table-3.3 are arranged according to 

the decreasing initial support value. 

Table-3.3 Decreasing ordering of items 
 

   Items 

    Tids 

a b c d e F g 

t1 4 3 3 3 2 0 0 

t2 3 2 2 0 1 0 0 

t3 2 1 0 0 0 0 1 

t4 0 0 1 2 0 1 0 

t5 1 0 0 1 0 0 0 

  

After sorting the transactions function 

sort_transactions() arrange the transactions in the increasing 
size in terms of number of item in the transaction. Final out-

put of function sort_transactions() is given by Table-3.4. 

Table-3.4 Transaction ordering according to size 
 

   Items 

   Tids 

a b c d E f g 

t1 4 0 0 3 0 0 0 

t2 0 0 3 2 0 1 0 

t3 3 3 0 0 0 0 1 

t4 2 2 2 0 2 0 0 

t5 1 1 1 1 1 0 0 

 

For making a prefix tree from the data given in Table-

3.1 function prefix() is used (refer Figure-3.5). This function 

makes use of the intersection rule and generates the prefix 

tree. 

IV. PERFORMANCE EVALUATION 

A series of executions were made to show the perfor-

mance of the proposed algorithm with the existing algo-

rithm. All experiments were performed on an Intel I3 pro-

cessor running at 2.20 GHz speed, supporting Dev-C++. 

Section-4.1 shows the experiments that are performed on 
synthetic dataset and section-4.2 shows the experiments that 

were performed on real datasets. 

4.1 Discussion of results on Synthetic Datasets 

Synthetic datasets were generated using IBM data gen-

erator to compare the performance of proposed algorithm 

with the existing algorithm. IBM data generator takes three 
parameters, total number of transactions to be generated 

(represented by T), average length of transaction (represent-

ed by L) and number of distinct items (represented by I). 

Table-4.1 shows the synthetic datasets generated along-with 

their nomenclature. 

Table-4.1 Different parameters used for generating synthetic 

datasets 

 

Synthetic Datasets Total number 

of transac-

tion(T) 

Average 

length of 

Transaction 

dataset(L) 

Total num-

ber of dis-

tinct 

items(N) 

T100k_L10_N10k 100 10 10 

T100k_L10_N20k 100 10 20 

T100k_L10_N30k 100 10 30 

T200k_L10_N10k 200 10 10 

T200k_L10_N20k 200 10 20 

T200k_L10_N30k 200 10 30 

T300k_L10_N10k 300 10 10 

T300k_L10_N20k 300 10 20 

T300k_L10_N30k 300 10 30 

T400k_L10_N10k 400 10 10 

T400k_L10_N20k 400 10 20 

T400k_L10_N30k 400 10 30 

T500k_L10_N10k 500 10 10 

T500k_L10_N20k 500 10 20 

T500k_L10_N30k 500 10 30 

 

Another set of synthetic datasets were generated contain-

ing number of transactions ranging from 1 lakh to 5 lakh, 

number of distinct items varying from 10k to 30k and aver-
age transaction length of 10. The datasets generated are di-

vided into 3 categories based on the number of distinct 

items. Datasets having number of distinct items 10k, 20k 

and 30k are grouped into Type-I, Type-II and Type-III re-

spectively.  

Table-4.2, Table-4.3 and Table-4.4 shows the compari-

son for the proposed algorithm and existing algorithm on 

datasets belonging to Type-I, Type-II and Type-III respec-

tively. Total execution time consists the input file reading 

time, time used for filtering, sorting and recording of items, 

time used for sorting of transactions, intersecting time and 

output file writing time. 
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Table-4.2 Comparison of number of intersecting nodes and execution time for the IsTa and NewIsTa algorithm on Type-I datasets 
 

 

 

   Type-I 

      Datasets 

              IsTa algorithm           NewIs Ta algorithm 

Number of 

intersecting 

nodes 

Intersecting 

time (sec.) 

Total execu-

tion time 

(sec.) 

Number of inter-

secting nodes 

Intersecting 

time (sec.) 

Total execu-

tion time 

(sec.) 

T100k_L10_N20k 23327 9.11 10.15 7984 1.84 2.03 

T200k_L10_N20k 42714 32.65 33.06 13360 5.87 6.29 

T300k_L10_N20k 61357 65.05 65.67 17998 12.29 12.82 

T400k_L10_N20k 76557 106.88 107.61 21369 20.56 21.3 

T500k_L10_N20k 92543 161.6 164.02 24923 31.06 31.96 

 

Table-4.3 Comparison of number of intersecting nodes and execution time for the IsTa and NewIsTa algorithm on Type-II datasets 
 

 

 

   Type-II 

      Datasets 

              IsTa algorithm           NewIs Ta algorithm 

Number of 

intersecting 

nodes 

Intersecting 

time (sec.) 

Total execu-

tion time 

(sec.) 

Number of inter-

secting nodes 

Intersecting 

time (sec.) 

Total execu-

tion time 

(sec.) 

T100k_L10_N20k 1240 0.12 0.77 448 0.06 0.25 

T200k_L10_N20k 1661 0.28 0.89 470 0.11 0.44 

T300k_L10_N20k 2356 0.39 1.28 477 0.14 0.69 

T400k_L10_N20k 2675 0.58 1.58 486 0.2 0.94 

T500k_L10_N20k 2710 0.67 1.7 505 0.23 1.1 

 

Table-4.4 Comparison of number of intersecting nodes and execution time for the IsTa and NewIsTa algorithm on Type-III datasets 

 

 

 

   Type-III 

      Datasets 

              IsTa algorithm           NewIs Ta algorithm 

Number of 

intersecting 

nodes 

Intersecting 

time (sec.) 

Total execu-

tion time 

(sec.) 

Number of 

intersecting 

nodes 

Intersecting 

time (sec.) 

Total execution 

time (sec.) 

T100k_L10_N30k 316 0.02 0.35 233 0.01 0.2 

T200k_L10_N30k 370 0.028 0.41 235 0.015 0.35 

T300k_L10_N30k 440 0.03 0.65 233 0.02 0.57 

T400k_L10_N30k 459 0.036 0.77 238 0.025 0.69 

T500k_L10_N30k 490 0.04 1.02 238 0.03 0.87 

Figure-4.1(a) and Figure-4.1(b) corresponds to Table-4.2 

presents the comparison for total intersecting nodes and 

total execution time for IsTa and NewIsTa algorithm respec-

tively. From Figure-4.1(a) and Figure-4.1(b), it can be in-

ferred that proposed algorithm has lesser number of inter-

secting nodes that leads to reduced intersecting time and 

finally total execution time for the proposed algorithm is 

reduced. Another observation that can be made from the 

Figure-4.1(a) and Figure-4.1(b) is that with the increase in 

the number of transactions the time taken by the proposed 

algorithm reduces as compared to the existing algorithm. 
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                                   (a)                                                                                                 (b)                                                                                                                                                                      
Figure 4.1Comparison of number of intersecting nodes generated and execution time taken by IsTa and NewIsTa algorithm on 

Type-I datasets 

        

                       (a)                                                                                              (b)                                                                                                                                                                      

Figure 4.2 Comparison of number of intersecting nodes generated and execution time taken by IsTa and NewIsTa algorithm 

on Type-II dataset
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                                  (a)                                                                                          (b)                                                                                                                                                                      

Figure 4.3 Comparison of number of intersecting nodes generated and execution time taken by IsTa and NewIsTa algorithm 

on Type-III dataset

In the similar way, Figure-4.2(a) and Figure-4.2(b) rep-

resents the details given in Table-4.3 and Figure-4.3(a) and 

Figure-4.3(b) gives graphical representation of Table-4.4. 

From the table 4.2, 4.3 and 4.4 and figure 4.1, 4.2 and 4.3, it 

can be inferred that proposed algorithm gives better result 

for all three type of synthetic datasets. It can be concluded 

from Figure-4.1, 4.2 and 4.3 that the proposed algorithm 
takes less intersecting time hence leads to reduced total exe-

cution time. 

4.2 Discussion of results on Real Datasets 

This section discusses the performance of the proposed 

algorithm in comparison to IsTa algorithm on real datasets 

such as click_stream, mushroom, retail in terms of number 
of intersecting nodes generated and execution time. Details 

are given in Table 4.5 and Figure 4.4(a) and 4.4(b). 

Click_stream dataset contains data related to real time 

browsing pattern. It contains 17431 total instances and it is 

collected over 74919 web hits. Mushroom dataset describe 

mushroom’s physical characteristics such as classification, 

poisonous or edible. It contains 2726 number of instances 

with 22 attribute values. Retail dataset contains data from a 

retail shop and contains 21292 transactions over 10348 

items.

 

Table-4.5 Comparison of number of intersecting nodes and execution time for the IsTa and NewIsTa algorithm on real datasets 

 

 

 

 
 

 

Real  Datasets IsTa algorithm NewIsTa algorithm 

Number of inter-

secting nodes 

Intersecting 

time (sec.) 

Total execution 

time (sec.) 

Number of inter-

secting nodes 

Intersecting 

time (sec.) 

Total execution 

time (sec.) 

Click_stream 159656 11.73 11.89 37745 1.00 1.08 

Mushroom 718182 16.79 16.89 58794 1.06 1.14 

Retail 62203 52.98 53.12 19211 2.01 2.08 
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Figure 4.4 Comparison of number of intersecting nodes generated and execution time taken by IsTa and NewIsTa algorithm 

on Real datasets 

From Figure-4.4(a) and Figure-4.4(b), it can be inferred 

that the proposed algorithm proves better for all the real 

datasets but for mushroom dataset it gives best results. For 

mushroom dataset the proposed algorithm has approximate-

ly one lakh lesser number of intersecting nodes. From the 

above comparison table and corresponding graphical repre-
sentation, it can be concluded that the proposed algorithm 

gives better results for both synthetic and  real datasets. 

V. APPLICATION AREAS  

Frequent itemset mining has a very wide area of applica-

tion such as market basket analysis, intrusion detection sys-

tem, heterogeneous genome data, remotely sensed imag-

es/data mining and product assortment decisions. Sub-

section 5.1 discusses maximum profit item selection and su-

section 5.2 discusses intrusion detection system in details. 

5.1 Maximum Profit  Item Selection (MPIS) 

There are certain applications where the generated data 

is very large such as transaction data of Wal-Mart in 

Hedberg. In Wal-Mart 200 lakhs sales transactions get gen-

erated within a single day. For such type of data an efficient 

mining solution is required that can generate reports on 

profit generated items and also have the capability to dis-

card the losing items. It may be simple enough to sort items 

by their profit and make the selection. However, this ignores 

a very important aspect in market analysis ‘the cross-selling 

effect’. Cross-selling items are those which do not generate 

much profit by themselves but they are the catalysts for the 

sales of other profitable items. 

For better understand the cross-selling effect three items- 

monitors, keyboards and telephones are taken with profits of 
1000, 100 and 300 respectively. The problem here is to se-

lect a subset from the given set of items so that the estimat-

ed profit of the resulting selection is maximal among all 

choices. This subset would be {monitors, telephones} here. 

However, there is strong cross-selling effect between moni-

tor and keyboard. If the shop stops carrying keyboard, the 

customers of monitor may choose to shop elsewhere to get 
both items. The profit from monitor may drop greatly, and 

we may be left with profit of 300 from telephones only. If 

both monitors and keyboards are chosen, then the profit can 

be expected to be 1100 which is higher.  

It has been suggested that it is possible to make a deci-

sion for Maximal-Profit Item Selection (MPIS) with Cross-

selling considerations in [7]. MPIS approach can be proved 

beneficial here. MPIS utilises the concept of the relationship 

between selected items and unselected items. The cross-

selling factor has been proposed in the form of loss-rule. A 

loss-rule has a form I → ◊d, where ◊d means the purchase of 

any item d. From the history, whenever a customer buys the 

item I, he/she also buy at least one of the items in d. This 

rule can be used to predict the customer behaviour. This rule 

holds when we have d in the stock but if there is no item d 

in the stock, then customer will not purchase I. This is be-

cause if the customer still purchases I, without purchasing 

any items in d, then the pattern would be changed. There-

fore, the higher the confidence of I → ◊d, the more likely the 

profit of I should not be counted. 

NewIsTa can be used for such kind of applications. For 

using NewIsTa the transactions dataset should be in the ac-

ceptable format. Most of the retail shops have a format simi-

lar to the format used in our experimental results but some 

shops use the following format:- 
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Here, Tids means the transaction identification number 

which uniquely identifies each transaction in the given data-

base. The <item list> contains a list of items that are pur-

chased. Item code is used in place of the item name. Item 

code is assigned to each and every item presented in the 

store, so that handling of transaction data becomes easy.  

This can be explained with the help of an example discussed 
below. 

Table-5.1 Transaction database 

 

Transactions Items 

t1 (1, 2, 5, 7, 8) 

t2 (1, 11, 7) 

t3 (8, 3, 6, 2) 

t4 (9, 2, 5, 3, 6, 8, 7, 10) 

t5 (18, 17, 13, 3, 6) 

 
For converting such kind of format to the desired format 

Tids are removed, items for a single transaction are present-
ed in the same line with single space as the separator and 

next line implies the next transaction.  

5.2 Intrusion Detection 

An intrusion detection system (IDS) is a device 

or software application that monitors network or system 

activities for malicious activities or policy violations and 

produces reports to a Management Station. We can apply 

data mining on the network data to learn rules that accurate-

ly capture the behaviour of intrusions and normal activities 
[11]. These rules can then be used for misuse detection and 

anomaly detection.  

Here the question arises that how can we apply data 

mining on the network data. Actually the program and user 

activity shows certain kind of patterns. Each user has a priv-

ilege to use the system such as the privilege of opening the 

files and editing the files. These normal user patterns gener-

ate a user profile which contains certain aspects related to 

user system usage such as the kind of operations carried out 

by user and its peak hours of usage. The data which are get-

ting generated from usage can be viewed with the help of 

exact time and command. Likewise, in network connection 
data, the combination of the features timestamp, source and 

destination hosts, source port, and service (destination port) 

uniquely identifies a connection record. Thus, they can be 

the essential features. We can apply mining of this data; 

however each of the inputs can vary depends upon the need 

of miner. For example, in the network data we can take a 

host as the mining parameters and can generate association 

rule related to the host. Similarly, to a single computer we 

can analyse the user pattern by taking commands as the pa-

rameter. These generated association rules form the basis of 

user profile generation. Any deviation from the normal user 
behaviour gives a sight of the attack. To better understand it 

let us take an example of a bank network dataset. We have 

profiles of usage such as enquiry counter staff generally 

uses the network highest at afternoon and has the access of 

only reading the account values. If we come across the writ-

ing and higher access statements at the evening time then it 

shows deviation from the normal profile behaviour. Hence it 

shows some kind of abnormal behaviour or malicious kind 
of activity. Below in Table-5.2 we have presented the net-

work database for a bank. It has a sequence of attribute ac-

cess, here each attribute value represent a unique operation 

(as shown in Table-5.2) and the subscript here denotes the 

read and write property for that attribute. 

Table-5.2 Bank network data 

 

Txn ID Attribute Access Sequence 

1 11r, 13w, 4r, 8r, 2r, 6r, 1r, 3r 

2 7r, 2r, 7r, 2r, 3r, 9w 

3 6r, 1r, 3r, 3r, 9w, 1w, 2r, 7w 

4 11r, 12w, 2r, 4w, 6r, 1r, 3r 

5 2r, 4w, 2r, 7w, 7r, 8r, 2r 

6 11r, 13w, 4r, 8r, 2r, 2r, 4w 

7 3r, 9w, 4r, 8r, 2r, 8r, 2r 

8 7r, 8r, 2r, 2r, 2r, 8w, 5w, 2r, 4w 

9 8r, 2r, 3r, 9w, 7r, 2r 

10 3r, 9w, 6r, 1r, 3r, 3r, 9w, 1w 

 

In intrusion detection system we need to pay special at-

tention to the minimum support value. Because each se-

quence have different operation and based on the type of 

operation each sequence need different pruning threshold. 

Below we discuss the minimum support calculation for each 

network sequence to be processed. Table-5.3 shows the 

enumeration of different access patterns. The Table-5.2 

shows the simple access pattern, but access is categorized 
based on the person which is using the services such as: 

 High Sensitivity (HS)  

 Medium Sensitivity (MS) 

 Low Sensitivity (LS) 

The sensitivity of an attribute depends on the particular 

database application where it is used. Such as higher author-

ities have the power to view the data, read data, write data, 

new account entry, personal information access etc. They 

are categories as high sensitivity data statements. The lower 

workers have the permission to only view and edit account 

statements. They are not capable of viewing and editing the 
personal details of the account holder. They are considered 

with lower sensitivity. Based on the application we can 

specify the sensitivity levels. For the above sensitivity level
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 we can assign weight to different sensitivity level such as 

w1, w2, w3 (refer to Table-5.4). Weight should be assign in 

the order w1≤w2≤w3 and w1, w2, w3 ∈ R. Here R is the set 

of real numbers. Let d1, d2, d3 ∈ R be the additional 
weights of the write operations for each category such that 

d3 ≤ d2 ≤ d1. Let x ∈ HS be an attribute that is accessed in a 

read operation. Then the weight given to x is w1. If it is 

accessed in the write operation, then the weight given to x is 

w1 + d1. 

Table-5.3 Bank database schema 

 

 

Table-5.4 Weight table for the attributes used in the 

bank database 

 

 

Let 3, 2 and 1 be the weights of HS, MS and LS, respec-

tively and 0.75, 0.50, 0.25 be the additional weights of write 

operation for HS, MS and LS. Let us say that there are at-

tributes a1, a2, a3, a4, a5, where a1, a3 ∈ HS, a2 ∈ MS and 

a4, a5 ∈ LS, and we have following four sequences 

(i) <a1r ,a3r ,a2w ,a4w>       (ii) <a1r ,a3w ,a4w> 

(iii) <a5r ,a2w ,a4r>             (iv) <a4r ,a5w> 

In sequence (i) the most sensitive attributes are a1, a3, 

which are in HS. Hence, the weight of this sequence is 3. 

Sequence (ii) contains the same set of most sensitive attrib-

utes as (i) but since in this sequence a3 has been present 

with writing operation, it is assigned a weight of 3 + 0.75. In 

the third sequence, the most sensitive attribute is a2, which 

is in MS and it is with write operation. So, the sequence (iii) 

gets a weight of 2 + 0.50. The last sequence contains sensi-

tive attributes a4, a5, which are in the LS and a5 is in writ-

ing operation. Hence, it gets a weight of 1 + 0.25. The 

weights are normalized so that they add up to unity. The 

weights assigned to the sequences, used to calculate the 
support of each sequence in the transaction, are required in 

the second pruning step. Let there be a sequence s with 

weight Ws. Let N be the total number transactions. If s is 

present in n out of N transactions, then the support of se-

quence s is: Support(s) = (n * Ws) / N. 

VI. CONCLUSION 

Arranging of items within the transaction has an effect 

on the size of prefix tree. Hence we conclude that arranging 

the items according to the deceasing initial support value 

reduces the size of prefix tree. It considerably reduces the 

total number of branches and nodes in the prefix tree and 

the effect of this reduction reflect in the total memory utili-

sation of the prefix tree. The smaller prefix tree takes less 
time in searching for any particular node and also makes it's 

handling easier. The main fact behind the reduction in size 

is that items with higher initial support value have more 

probability of occurring in the intersection. Arranging the 

items in decreasing order of support value allow the higher 

support item to exist at the first level in prefix tree. These 

higher support items exist more often in intersection while 

we search for intersecting items in the tree they can be 

found at the first level of the prefix tree thus it prevents ex-

tra branches to be added in the tree and thus the number of 

branches in the prefix tree reduces.  
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