
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 65-71
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

65

JSP CUSTOM TAG FOR DISPLAYING MASTER-

DETAIL RELATIONSHIP IN A HIERARCHICAL

GRID CONTROL – A CASE STUDY

 Dr.Poornima G. Naik Mr. Girish R. Naik

 Department of Computer Studies Production Department

Chh. Shahu Institute of Business Education & Research KIT’ College of Engineering

 Kolhapur, Maharastra, India Kolhapur, Maharastra, India

Abstract— Applications of all type and size incorporate

some sort of database functionality and reveal implicit

relationship between different parts of data. This type of

relationship can very well be modeled using master-detail

relationship. All modern GUI-based languages support

rich controls for visualizing master-detail relationships.

One such popular control is a hierarchical grid control

which expands and collapses the detailed records based on

the selection of the master record. One of the prime

benefits offered by the custom controls is that they are

reusable within the platform. However, such controls

suffer from the severe limitation that they are resource

intensive and are not portable. The best of both the worlds

can be realized by implementing the required functionality

as a part of custom tag library. Reusability can effectively

be blended with reusability in JSP custom tag library.

Most of the popular frameworks rely on their own custom

tag libraries for GUI design, code template, validation etc.

to name a few. In order to cater this general demand, in

this paper, the authors have presented JSP custom tag

library for displaying master-detail relationship in a

hierarchical data grid control. In contrast to other custom

controls, this particular control is drawn which renders it

light-weight and amenable to be incorporated in web

applications. The tag works with disparate back ends and

can comfortably be extended to other back ends with only

minor changes in the code. The database extensions are

properly taken care of by pulling out the relevant schema

information from the underlying database management

system.

Keywords— Attribute Design Pattern, Back End,

BodyTagSupport class, Custom Control, Nested Tags, Tag

Handler Class, TagLib Directive.

I. INTRODUCTION

One of the prime benefits offered by object-oriented
programming paradigm is reusability of code. Nevertheless
there is a fistful of technologies supported by modern
languages which result in plethora of boilerplate code required
towards exception handling and code management. One such
technology supported by Java is JDBC technology.
Meanwhile many alternatives have been proposed for
encapsulating such boilerplate code by reducing them to one
liners. One such technique is implementation of custom tag
library.

JSP technology supports tag extensions where a new
mechanism is devised for creating new extensions and
embedding them in a JSP page focusing on the tag simplicity
rendering them usable by the non-programmers.

The prime steps involved in writing a custom tag are:

 Designing and implementing a tag handler class for the
custom tag. This can be achieved by extending either
javax.servlet.jsp.tagext.TagSupport or
javax.servlet.jsp.tagext.BodyTagSupport class.

 Storing the tag specific information in an XML file by
generating tag library descriptor document.

 Designing a client JSP page by employing taglib directive.

The inheritance diagram for the BodyTagSupport class is

depicted in Fig. 1.

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 65-71
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

66

Fig. 1. The inheritance diagram for the BodyTagSupport class

As seen from Figure 1 a custom tag can be created by
extending a BodyTagSupport class which in turn extends
TagSupport class and implements BodyTag interface.
TagSupport class further implements either Tag or
IternationTag interface.

JSP action tags facilitate rapid application development by

concealing a huge amount of boilerplate code behind a set of

custom tags. One of the authors is involved in the

development of custom tag library for displaying table data in

a database independent manner, performing various DML

operations, performing table joins etc. [1,3].

II. LITERATURE REVIEW

Custom tags play an important role in web applications. JSP

custom tags are written to extract data from database using

drop down menu to generate options dynamically [4]. A

thorough investigation for categorization of requirements and

design of tag software in web application has been carried out

by [5]. Authors have presented a case study of freely available

tag software. The development and testing of an accurate

mass–time (AMT) tag approach for the LC/MS-based

identification of plant natural products in complex extracts has

been reported by [6]. Its utility is verified by the detection and

annotation of active principles in different medicinal plant

species with diverse chemical constituents. Tagging plays a

vital role in bioinformatics also . A method to generate

poly(A) tags libraries for high-throughput sequencing (PAT-

seq) has been reported by [7]. This method has been applied to

investigate mRNA polyadenylation in Arabidopsis. Internet

has become a vital source of information. Due to this there is

need for powerful internet systems which can help in

audiovisual content searching on internet. A new technique of

searching and indexing of audio visual contents on the internet

has been carried out by [8]. When developers are working on

different platforms then code migration is a major issue. Three

methods of code migrations from JSP to ASP.NET Entire

code transform migration, Reserved migration and Neutral

migration has been proposed by [9]. In development of IOT

based applications there is need for a way to connect things

and services together and processing of data emitted by them

using data flow paradigms. Automation of distribution of these

data flows using appropriate distribution mechanism has been

carried out by [10].

III. THEORETICAL FRAMEWORK FOR TAG DESIGN

A. Design Pattern for Tag Attribute –

The design pattern for a typical tag attribute consists of a pair

or accessor and mutator methods as shown below:

T getN();

void setN(T)

where N is the name of the tag attribute and T is its type.

B. Tag Library Descriptor Document –

A tag library descriptor file is a simple XML file with the

extension .tld embedding a set of custom tags encapsulating a

tag related information. The structure of a typical tag library

descriptor file is shown below:

<?xml version="1.0" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library

1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

 <taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.1</jsp-version>

 <short-name>simpletaglib</short-name>

 <description>My first Tag Library</description>

<tag>

 <name>…</name>

 <tag-class>…</tag-class>

 <body-content>…</body-content>

 <attribute>

 <name>…</name>

 .

 .

 </attribute>

 .

 .

 </tag>

 .

 .

 <tag>

 </tag>

</taglib>

The required child elements of <tag> element are <name>,

<tag-class> and <body-content> and optional child element is

<attribute>. The <attribute> child element contains the

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 65-71
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

67

compulsory child element <name> and other optional child

elements such as <rtexprvalue>, <required>, etc.

C. Life Cycle of a Tag Handler Class –

The life cycle of a tag is depicted in Figure 2. As shown in

Fig. 2. setParent() method is invoked only for nested tags.

Mutator methods are invoked for every attribute specified in

the tag. doStartTag() method is invoked when the start tag is

encountered which returns one of the constants SKIP_BODY

or EVAL_BODY_INCLUDE. In the former case, doEndTag()

method is invoked while in the latter case doAfterBody() is

invoked which is iteratively invoked till the SKIP_BODY is

returned after which a concluding life cycle method

doEndTag() is invoked.

Fig. 2. Life Cycle of Custom Tag

is i JSP tags can be nested one inside another. In such a case,

an inner tag can access the attributes of an outer tag by

retrieving a reference to the outer tag handler class and then

invoking the corresponding accessor methods of tag handler

class as shown in the following code snippet.

ParentTag p = (ParentTag)

findAncestorWithClass(this, ParentTag.class);

T p.getN();

where ParentTag refers to the outer tag in which the current

tag is nested and N is the property of its tag handler class of

type T corresponding to the attribute of the tag.

Another requirement is that the doStartTag() method of parent

tag’s tag handler class should return a constant

EVAL_BODY_INCLUDE, which evaluates body into

existing out stream.

D. Communication Between a Tag Handler Class and a

Client JSP Page –

The expand and collapse buttons on the hierarchical grid

control placed on a client JSP page cause a post back to the

same JSP page. During the self post back, the hierarchical grid

control is updated each time to show/hide detail records as the

case may be. Since the control is rendered by the

corresponding tag handler class, the communication between

client JSP page and the corresponding tag handler class

becomes inevitable where the client JSP page passes on the

end user action information to the tag hander class specifying

the type of operation the user desires to perform at runtime.

The following code snippet is employed for extracting the

name of the client JSP page from within the tag handler class.

String pagename=this.pageContext.getPage().toString();

int to=pagename.indexOf("@");

int from=pagename.lastIndexOf(".");

String page=pagename.substring(from+1, to-4)+".jsp";

Now, the tag handler class can use this information for

rendering the control properly.

For rendering the tag generic, the attributes applicable to the

various database management systems are identified and are

added to the parent tag definition in the tag library descriptor

file [11].

E. Control Folder Structure–

The position of the different project components in an Eclipse

project folder with the name hierarchical grid is depicted in

Fig. 3.

Fig. 3. Control Folder Structure

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 65-71
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

68

F. Class Diagram –

The structure of the different classes employed in control

design is shown in Fig. 4.

Fig. 4. Structure of Tag Handler Classes

G. Interaction Between Project Components –

Figure 5 depicts the interaction between project components.

As seen from Figure 5, JSP runtime invokes JSP client which

embeds custom tag employing taglib directive and the tag is

processed by the JSP runtime by invoking the corresponding

tag handler class and accessing tag library descriptor file

which includes tag description. The tag handler class employs

JDBC drivers for interfacing with back end database

management systems.

Fig. 5. Interaction Between Project Components

IV. IMPLEMENTATION OF A CUSTOM TAG

This section presents structure of tag library descriptor file and

the proposed algorithm for the implementation of a custom

tag.

A. Structure of Column Tag –

Structure of MasterDetail tag

<tag>

 <name>MasterDetail</name>

 <tag-class>csiber.MasterDetailTag</tag-class>

 <body-content>JSP</body-content>

 <attribute>

 <name>masterTableName</name>

 </attribute>

 <attribute>

 <name>masterColumnName</name>

 </attribute>

 <attribute>

 <name>masterColumnValue</name>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

<attribute>

 <name>detailTableName</name>

 </attribute>

 <attribute>

 <name>detailColumnName</name>

 </attribute>

 </tag>

Structure of HierarchicalDataGrid tag

<tag>

 <name>HierarchicalDataGrid</name>

 <tag-class>csiber.HierqarchicalDataGridTag</tag-class>

 <body-content>empty</body-content>

 <attribute>

 <name>dsnName</name>

 </attribute>

 <attribute>

 <name>dsnName</name>

 </attribute>

 <attribute>

 <name>backEnd</name>

 </attribute>

 <attribute>

 <name>databaseName</name>

 </attribute>

 <attribute>

 <name>userName</name>

 </attribute>

 <attribute>

 <name>password</name>

 </attribute>

 </tag>

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 65-71
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

69

B. Proposed Algorithm –

The algorithm for displaying the master-detail relationship in a

hierarchical grid control in C++ style is presented below:

/*Any high level language interfacing with back end database

management system provides high level API for primitive

database functions such as creating a connection object and

generating a page request by sending the necessary input

information in a query string. Hence this algorithm assumes

some standard functions as shown below:

Standard Functions of language L used in the Algorithm

loadDriver() - is function in a language L for loading

appropriate DBMS driver in memory depending on the name

of DBMS passed as parameter.

connectTo() - is a function in a language L for establishing

the connection to remote DBMS depending on the name of

DBMS passed as a parameter.

getPageName() - is a function in language L for returning the

name of the web page requested.

getQueryString() - is a function in language L for returning

the value of the query string parameter whose name is passed

as a parameter to the function.

constructQuery() – is a function in language L for

constructing an SQL query for pulling data from the table

whose name is passed as a parameter.

executeQuery() – is a function in language L for executing the

query against backend database management system.

startsWith() - is a function in language L for checking whether

the string passed as a first parameter starts with the character

passed as second parameter.

displayDetailRecords() - is a function in language L for

displaying records of a detail table.

*/

/* Invoked wheh start tag is rendered */

function doStartTag()

{

 Read backEnd;

 if (backEnd==null)

 {

 backEnd=”MS-Access”;

 }

 /* Load appropriate database driver and construct

database connection */

 if (backEnd==”MS-Access”)

 {

 loadDriver(“MS-Access”);

 connectTo(“MS-Access”);

 }

 if (backEnd==”MySQL”)

 {

 loadDriver(“MySQL”);

 connectTo(“MySQL”);

 }

if (backEnd==”Oracle”)

 {

 loadDriver(“Oracle”);

 connectTo(“Oracle”);

 }

 /* Extract the name of the page for self postback */

 String page=getPageName();

 /* Extract Query String Parameter oper */

 String oper=getQueryString(“oper”);

 if (startsWith(oper, “-“))

 {

 query=constructQuery(detailTableName);

 executeQuery(query);

 metadata=getResultSetMetadata();

 if (!startsWith(oper,”-“))

 row=substring(oper,1);

 if (!startsWith(oper,”-“))

 oper=”+”;

 else

 oper=”-“;

 query=constructQuery(masterTableName);

 executeQuery(query);

 if (row==” ”)

 {

query=constructQuery(detailTableName);

 executeQuery(query);

 displayDetailRecords();

 }

 }

 }

 }

}

V. RESULTS AND DISCUSSIONS

The algorithm presented in Section 4 is implemented in Java

using Eclipse editor. The tag is tested for three different

database management systems MS-Access, MySQL, and

Oracle 10g.

The code snippet for accessing the tag in each case is shown

below:

A. JSP Client for MS-Access –

In order to display master-detail relation in a hierarchical grid

control for MS-Access database create a 32-bit system DSN

on windows platform. The JSP code for achieving this is

shown below:

<%@ taglib uri="/WEB-INF/lib/hierarchicalgrid.tld"

prefix="Database" %>

<html>

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 65-71
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

70

<head>

<title>Masterr-Detail Relationship in Hierarchical Grid

Control</title>

</head>

<body>

<h3>Hierarchical Grid control</h3>

<Database:MasterDetail masterTableName="student"

masterColumnName="RollNo" detailTableName="marks"

detailColumnName="RollNo" >

<Database:HierarchicalDataGrid dsnName="exam"/>

</Database:MasterDetail>

</body>

</html>

B. JSP Client for MySQL –

For interfacing with MySQL database management system

appropriate Type-IV JDBC driver needs to be downloaded and

be placed in WEB-INF\lib folder under a project folder.

<%@ taglib uri="/WEB-INF/lib/hierarchicalgrid.tld"

prefix="Database" %>

<html>

 <head>

 <title>Masterr-Detail Relationship in Hierarchical Grid

Control</title>

 </head>

 <body>

 <h3>Hierarchical Grid control</h3>

 <Database:MasterDetail masterTableName="student"

masterColumnName="RollNo" detailTableName="marks"

detailColumnName="RollNo" >

 <Database: HierarchicalDataGrid

databaseName="exam" backEnd="MySQL"

 userName="root" password="mca" />

 </Database:MasterDetail>

</body>

</html>

C. JSP Client for Oracle –

In order to interface with Oracle 10g database management

system oracle thin driver of Type-IV JDBC driver, ojdbc.jar

needs to be downloaded and be placed in WEB-INF\lib folder

under a project folder.

<%@ taglib uri="/WEB-INF/lib/hierarchicalgrid.tld"

prefix="Database" %>

<html>

 <head>

 <title>Masterr-Detail Relationship in Hierarchical Grid

Control</title>

 </head>

 <body>

 <h3>Hierarchical Grid control</h3>

 <Database:MasterDetail masterTableName="student"

masterColumnName="RollNo" detailTableName="marks"

detailColumnName="RollNo" >

 <Database: HierarchicalDataGrid backEnd="Oracle"

 userName="system" password="siber"

 ipAddress="192.168.30.94" hostString="orcl"/>

 </Database:MasterDetail>

<body>

</html>

The Graphical User Interface (GUI) which is dynamically

generated by the custom tag is shown in Fig. 6(a) and 6(b).

Fig. 6(a) depicts the state of hierarchical grid control in

collapse state and Fig. 6(b) depicts the state of hierarchical

grid control in an expanded state on selection of a particular

master table record.

Fig. 6(a) Hierarchical Grid Control in Collapse State

Fig. 6(b) Hierarchical Grid Control in Expanded State

VI. CONCLUSION AND SCOPE FOR FUTURE WORK

JSP custom tags play a prominent role in code reduction and

code reusability and make significant contribution to rapid

web application development. As the tag is implemented in

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 65-71
 Published Online June - July 2016 in IJEAST (http://www.ijeast.com)

71

Java, the tag automatically reaps the benefits offered by Java

language such as portability, security and robustness. In the

current work the authors have designed and implemented a

custom tag for modeling the master-detail relationship in a

hierarchical grid control. The algorithm is devised for control

design and control folder structure and interaction between

various project components is presented. The current work can

be extended further to incorporate multiple levels of hierarchy

in a single control for modeling deeply nested relations.

VII. REFERENCE

[1] Dr. Poornima G. Naik, JSP Custom Tag Library for

Implementing JDBC Functionality,
http://www.codeproject.com/Articles/1084607/JSP-
Custom-Tag-Library-for-Implementing-JDBC-Funct,
11th March 2016.

[2] Dr. Poornima G. Naik, JSP Custom Tag Library (Version
2) for DML Operations,
http://www.codeproject.com/Articles/1085185/JSP-
Custom-Tag-Library-Version-for-DML-Operations, 14th
March, 2016

[3] Dr. Poornima G. Naik, JSP Custom Tag Library for Table
Joins and Master Detail Relationships,
http://www.codeproject.com/Articles/1086716/JSP-
Custom- Tag-Library-for-Table-Joins-and-Master, 19th
March, 2016.

[4] Xiong, Yingyidu. "The design of automatically generating
drop- down a menu on JSP." Computer Science and
Information Processing (CSIP), 2012 International
Conference on. IEEE, 2012.

[5] Gupta, Karan, and Anita Goel. "Requirement Estimation
and Design of Tag software in Web Application."
International Journal of Information Technology and Web
Engineering (IJITWE) 9.2 (2014): 1-19.

[6] Cuthbertson, Daniel J., et al. "Accurate mass–time tag
library for LC/MS based metabolite profiling of medicinal
plants." Phytochemistry 91 (2013): 187-197.

[7] Liu, Man, Xiaohui Wu, and Qingshun Quinn Li.
"DNA/RNA Hybrid Primer Mediated Poly (A) Tag
Library Construction for Illumina
Sequencing."Polyadenylation in Plants: Methods and
Protocols (2015): 175-184.

[8] Kamal, Arif. "Tag Based Audiovisual Content Indexing.",
MASTER'S THESIS, Master of Science, Computer
Science and Engineering,Luleå University of Technology,
Department of Computer science, Electrical and Space
engineering, 2016

[9] Xu, Ming, et al. "Research on the Method of Code
Migration from JSP to ASP. NETMing." Advanced
materials research. Vol. 756. 2013.

[10] Nam Ky Giang, Michael Blackstock, Rodger Lea, Victor
C.M. Leung , Developing IoT Applications in the Fog: a
Distributed Dataflow Approach. Procs. of the Internet of
Things (IOT), 2015 International Conference on the,
Seoul, Korea, Oct 26-28, 2015

[11] Dr. Poornima G. Naik and Dr. K.S.Oza, JSP Custom Tag
Library for In-Place Editing in Disconnected Architecture
- A Case Study, International Journal on Recent Trends in
Computing and Communication, vol. 4, no. 4, pp. 319-
326, April 2016. Barni M., Bartolini F., Piva A.,
Multichannel watermarking of color images, IEEE
Transaction on Circuits and Systems of Video
Technology 12(3) (2002) 142-156.

