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Abstract— Radial basis function method of lines (RBF-

MOLs) for approximating the two-dimensional heat 

equation were formulated using two globally supported 

and positive radial basis functions (RBFs), namely, inverse 

quadratic (IQ), generalized inverse multiquadric (GIMQ) 

and the fourth order Runge-Kutta method. The RBFs 

were used for discretizing the space variables while the 

fourth order Runge-Kutta method was used as a time-

stepping method to integrate the resulting systems of 

ordinary differential equations (ODEs) that emanated 

from the space discretization. The methods were 

implemented in MATLAB and compared with the 

multiquadric radial basis function method of lines (MQ-

RBF-MOLs). The performance of the proposed RBF-

MOLs was measured in terms of point-wise error and 

processing time (CPU Time). Our numerical results show 

that our proposed methods compared favourably with the 

MQ-RBF-MOLs  
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I.  INTRODUCTION 

Radial basis functions (RBFs) were derived for the purpose of 

multivariate scattered data interpolation Buhmann [1]. In 

1990, Kansa [2, 3] got a breakthrough by developing a 

multiquadric (MQ) RBF-collocation scheme for 

approximating the elliptic, parabolic and hyperbolic partial 

differential equations (PDEs), this methodology is referred to 

as Kansa’s method. The pioneer work of Kansa in RBF paved 

way for a research boom in RBFs and their numerous 

applications to PDEs Chen et al. [4]. In recent times, RBF 

methods are applied to numerical solutions of integral 

equations (IEs), Integro-partial differential equations (IPDEs), 

plasma fussion simulations, molecular quantum mechanics, 

cellular biology Kansa and Holoborodko [5], multivariate 

scattered data processing Iske [6], neural networks Chen et al. 

[7], machine learning  Cortes and Vapnik, Burges [8, 9] etc. 

RBF methods are becoming viable choice numerical methods 

in different scientific computing communities. They are 

preferred to other locally based polynomial methods such as 

the finite difference method (FDM), finite element method 

(FEM), finite volume method (FVM), boundary element 

method (BEM) Chen [4], globally based polynomial methods 

such as pseudospectral methods Sarra and Kansa [10] etc. The 

reason for the preference of RBF methods over other 

numerical methods is that besides being mathematically 

simple, they do not require any mesh generation which is 

advantageous for application to higher-dimensional problems 

containing irregular or moving boundary, and, they also have 

spectral convergence Chen et al. [4].  

Although the are many modifications and improved 

RBF-collocation methods that are presented in Chen et al. [4],  

Buhmann [1] G. E. Fasshauer [11] and Chen et al. [12], but 

Kansa’s RBF-collocation method still remains one of the 

commonly used methods. The main advantage of the Kansa’s 

method is that it uses global approximations of the space 

variables on both the domain and the boundary, this 

methodology makes the method simple but effective in 

dealing with higher-dimensional problems with complex 

domain geometry Yao et al. [13].  

In many applications, the globally supported RBF 

methods are used Kansa and Holoborodko [5]. Chen et al. [4] 

highlighted some of the admirable features of the globally 

supported RBFs as (i) highly accurate and often converge 

exponentially, (ii) easy to apply to higher dimensional 

problems (iii) meshless in approximation of multivariate 

scattered data (iv) easy to improve the numerical accuracy by 

adding more points around large gradient regions. Most of the 

globally supported RBFs are continuously differentiable 

, these group of RBFs are the best to solve 

numerically higher dimensional partial differential equations 

(PDEs) due to some of the reasons, (i) an -dimensional 

problem becomes a one-dimensional radial distance problem, 
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(ii) the convergence rate increases with the dimensionality (iii) 

they have spectral convergence Kansa and Holoborodko [5].  

Among the globally supported RBFs that are 

continuously differentiable, the generalized multiquadric 

RBFs (GMQ-RBFs) are commonly used, this can be traced to 

the work of Franke [14], he used the following criteria: timing, 

storage, accuracy, visual pleasantness of the surface and the 

ease of implementation to extensively test 29 different 

algorithms on some interpolation problems and he ranked the 

MQ-RBF and the thin plate spline radial basis function (TPS-

RBF) as the best candidates. The simplicity of the 

interpolation matrix of the MQ-RBF makes it more attractive 

to many applications as compared to the TPS-RBF. Similarly, 

Kansa and Holoborodko [5] also observed that two commonly 

used globally-supported and  are the Gaussian and 

the generalized multiquadrics radial basis function GMQ-

RBF.  

The Gaussian is defined by  

 
while the GMQ-RBF is defined  

 
where ,  is called the shape parameter,  is a 

norm, usually the Euclidean norm. 

   The most frequent used values of  are  

Kansa and Holoborodko [5]. RBF methods can either be 

applied independently or combined with other numerical 

methods to formulate hybrid numerical methods. One of the 

prominent numerical methods that combines RBFs and other 

numerical methods is the method of lines (MOLs) referred to as 

radial basis function method of lines (RBF-MOLs). This 

method is constructed by combining an RBF method which is 

used for space discretization and a time-stepping method which 

is used for integrating the system of ODEs that emanate from 

the space discretization. The MOLs is a suitable numerical 

method for approximating some time-dependent PDEs Sarra 

and Kansa [10], Fasshauer and McCourt [15] and Bibi [16]. 

Many researchers Sarra and Kansa [10], Bibi [16] and         

Luga et al. [17] among others have applied the RBF-MOLs for 

the solution of some time-dependent PDEs. The performance of 

the RBF-MOLs measured using the point-wise error, compared 

with other numerical methods show that the RBF-MOLs 

outperformed the other numerical methods especially in terms 

of accuracy. 

To demonstrate the ease of implementing the RBF-

MOLs in higher dimensions and on irregular shaped domains, 

Sarra and Kansa [10] applied the MQ RBF-MOLs to 

approximate a two-dimensional heat equation on complex 

domain, the point-wise error showed that the MQ RBF-MOLs 

yielded accurate approximations. They also used the finite 

difference method of lines (FD-MOLs) to approximate the 

same two-dimensional heat equation and compared the result 

with MQ RBF-MOLs, the numerical results obtained from the 

MQ RBF-MOLs was better than that of FD-MOLs when 

compared to the exact solution.  

The motivation of this work comes from Luga et al 

[17]. They formulate the inverse multiquadric (IMQ), IQ, 

GIMQ RBF-MOLs and applied the methods to approximate 

some time-dependent PDEs in one-dimension space, their test 

problems were obtained from Sarra and Kansa [10] and were 

compared in terms of point-wise error. They observed that 

their results compared favourably with those obtained from 

the MQ RBF-MOLs of Sarra and Kansa [10]. In view of the 

above, we combine (i) the inverse quadratic (IQ) RBF, (ii) the 

generalized inverse multiquadric (GIMQ) RBF with the fourth 

order Runge-Kutta method to propose two RBF-MOLs, 

namely, IQ RBF-MOLs and GIMQ RBF-MOLs for 

approximating the two-dimensional heat equation. The reason 

for the choice of these RBF-MOLs is that many researchers 

have focus on applying equation (2) for the values of   

and recently, Kansa and Holoborodko [5] explained that 

using the advanpix multi-precision toolbox (AMPT), other 

values of  such as   are now becoming viable choice 

for GMQ RBF methods. However, much is not known about 

IQ and the GIMQ RBF methods especially the GIMQ RBF 

method which are defined by equation (2) for the values of 

. To this end, we wish to explore these RBF 

methods and apply them to different problems and make 

comparisons with the frequently used MQ RBF methods. 

The rest of the paper is organized as follows: Section 

II is devoted to developing the RBF-MOLs by first 

formulating the interpolation matrix, the evaluation matrix and 

the differentiation matrix of the IQ and GIMQ RBFs. The 

numerical testing and comparison of results is reported in 

Section III, discussion in section IV and finally the conclusion 

is presented in Section V. 

II METHODS 

  The formulation of radial basis function method of 

lines (RBF-MOLs) for approximating the two-dimensional 

heat equation is described in this section, much emphasis is 

paid to the differentiation matrices of the IQ and GIMQ RBF 

methods which are the main tools for the space discretization. 

The algorithm for the space discretization using RBF methods 

and the algorithm for time-stepping using the fourth order 

Runge-Kutta method are also provided in this section. The 

radial basis function (RBF) interpolation method which is key 

to the construction of the MOLs is first explained in details. 

 

Radial Basis Function (RBF) Interpolation Method 

 Suppose  is a 

set of function values sampled from an unknown function 

 at a scattered data set 

 To compute an interpolant 

, which is an approximation of  requires using 

the condition  which is satisfied by 
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 RBF interpolation scheme works with a fixed radial 

function , where the interpolant  in equation 

(2.1) is assumed to be of the form 

 
 where  denote the Euclidean norm on  and 

is the linear space containing all real-valued polynomials 

in  variables of degree at most  respectively. 

 is said to be the order of the basis function. 

  The IQ and GIMQ RBFs are positive definite, thus, 

the polynomial term in equation (2.2) is not required to make 

their interpolation matrices invertible Fasshauer [11], hence 

we shall consider an interpolant of the form 

 
 

Interpolation or System Matrix of Positive Definite RBF 

Methods 

 To form an interpolation matrix for a positive definite 

RBF method, equation (2.3) is expanded for the data points 

 and centres  which results to a 

linear combination of terms that can be written in the form 

 
 where  is a matrix with the entries  

 
 

Interpolation or System Matrix of IQ and GIMQ RBF 

Methods 

  The basic functions and the interpolants of the IQ and 

GIMQ RBF methods provided in Table 1 are used to obtain 

their various interpolation matrices. 

 

 Table 1: The Basic Functions and Interpolants of the IQ 

and GIMQ RBFs 
S/No. RBF Basic 

Function 

 

Interpolant  

1 Inverse 

Quadratic  

(IQ) 

 

 

3 Generalized 

Inverse 

Multiquadrics  

(GIMQ) 

 

 

 

The interpolation matrices with the entries  for IQ and 

GIMQ obtained by applying the interpolation condition (2.1) 

to the interpolant in Table 1 are provided in equation (2.6) 

 

 

 Substituting  gives the interpolation matrices 

of the IQ and GIMQ RBF respectively. 

 

Evaluation Matrix of Positive Definite RBF Methods 

  To get the evaluation matrices for IQ and GIMQ RBF 

methods,  are obtained by solving equation 

(2.4) from the interpolation matrix, the interpolant (2.3) is 

evaluated at  points to form an  matrix  called the 

evaluation which has the entries  

 

 
In this work, we ensure that the number of data point are equal 

to the number of centres so that we may get unique solution 

[15]. To this end, instead of getting an  matrix, we have 

an  matrix. To get the respective evaluation matrices for 

IQ and GIMQ, for the values of , the entries 

of equation (2.6) are evaluated. 

 

Differentiation Matrix and Approximation of Derivatives 

using RBF Methods 

  Discretizing the partial derivatives of a PDE using an 

RBF method requires the use of a differentiation matrix, this is 

achieved by finding the partial derivatives of the interpolant 

(2.3) and expressing the differentiation matrix in terms of the 

interpolation and the evaluation matrices [10]. 

The first and second partial derivatives are given 

below 

 

 
 Higher order partial derivatives and mixed partial 

derivatives are handled in a similar manner. 

Suppose equations (2.8) and (2.9) and higher order 

derivatives are evaluated at the centres  and written in 

matrix form, we have 

 

 where   are the derivatives of the evaluation matrix with 

entries defined by equation (2.7). We denote the derivatives of 

the first and second evaluation matrices as  

respectively. 

 

 Making  the subject of the formula in equation (2.4) gives 

 
 substituting equation (2.11) into (2.10) gives 

 
but 
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 Clearly, 

 
 Equation (2.13) represents the differentiation matrix 

of RBF methods and it is defined if the interpolation matrix is 

invertible. The derivatives of the function  at the 

centres can be approximated using a single 

differentiation matrix  for linear problems, however, for 

nonlinear problems,  is applied to each partial derivative 

separately. 

  According to Sarra and Kansa [10], the chain rule for 

the first and second derivatives for any sufficient 

differentiable RBF , is defined by  

 

 
 where  

 
 

Well-Posedness of the Interpolation Problem 

  A problem is said to be well-posed if it exists and it is 

unique. The existence and uniqueness of the differentiation 

matrix, equation (2.13) used for the space discretization of 

PDEs is guaranteed if the interpolation matrix [A] is 

invertible. An interpolation matrix is invertible if the basis 

functions which are the entries of the matrix is completely 

monotone and radial Fasshauer [11], since the basis functions 

are generated from a basic function, we shall use the theorem 

below to establish that the basic functions of IQ and GIMQ are 

invertible and consequently their differentiation matrices. 

 

Theorem 2.1: Completely Monotone Functions       

Fasshauer [11] 

  A function  that is 

 and satisfies  

 
 is completely monotone on  

 

 Theorem 2.2: Multiply Monotone Functions  Fasshauer [11] 

  A function  which is 

 and for which non-

increasing and convex for  is called  

times monotone on  In case  the only 

requirement is that  be non-negative and non-

increasing. 

 

 Invertibility of the interpolation or System Matrices of 

IMQ, IQ and GIMQ 

  Using the basic functions provided in Table 1 and 

applying Theorems 2.1 and 2.2, we obtain the following 

results that show that the interpolation matrices of IQ and 

GIMQ are invertible and consequently exist and are unique. 

 
IQ:             (2.17) 

GIMQ:   (2.18) 

  

 

Algorithm for Discretizing the Space Variable(s) using 

RBF Methods 

To apply meshless method of lines technique using 

radial basis function, we consider a PDE of the form 

                 
 where  

  

 , 

 

 
 . 

One advantage of the Kansa’s method is that both the interior 

and boundary data points are discretized at once and in a 

similar manner, however, the interior points are arranged 

before the boundary points. 

Let the centres in the problem domain be given as 

 Since we are dealing 

with two-dimensional problems, we restrict   

The approximate solution  for a time dependent PDE 

can be expressed as  

 
In matrix form, equations (2.20) and (2.21) can be written as  

 

 
and  

 
where  has entries of the form 

 
and  is the matrix with entries of the form  

 
From equation (2.21), (2.22) and (2.23), we have  

 

 
where 

   

After discretizing a PDE in space with radial basis functions, 

equation (2.19) is transformed into a semi discretized system 

given by  
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 The system of ODEs (2.26) are integrated using a suitable 

ODE solver. In this work after discretizing the space 

derivatives using the differentiation matrices of IQ and GIMQ, 

the resulting systems of ODEs are integrated using the fourth 

order explicit Runge-Kutta method. 

 

Algorithm for Fourth Order Runge-Kutta Method used as 

a Time-Stepping Method 

 The explicit fourth-order Runge-Kutta (RK4) 

algorithm for integrating the system of ODEs is described 

below. It is assumed that , , 

 

 

 

 
 Therefore,  

  

 

III.        EXPERIMENT AND RESULTS 

In this Section, we provide the numerical results for a 

two-dimensional heat equation using the IQ RBF-MOLs and 

GIMQ RBF-MOLs formulated and described in Section 2. 

These methods are implemented in MATLAB, while the 

results are displayed in Tables and graphs for analysis, 

discussion and conclusion. The CPU time for this Example is 

also provided for comparison with the MQ RBF-MOLs. All 

the programmes are written in Windows 8 operating system 

using MATLAB 2007b. The test problem and the parameter 

values are drawn from the work of Sarra and Kansa [10].  

 

Example: A Two-Dimensional Heat Equation 

Consider the two-dimensional heat equation 

 
the Dirichlet boundary conditions are specified using the exact 

solution  

 , 

while the initial condition is given as  

  . 

Equation (3.1) is solved on three domains containing different 

pattern of spaced data points namely, equally spaced data 

points, scattered data points and scattered points on a complex 

domain as shown in Figure 1. The space derivatives are 

discretized using the inverse quadratic (IQ) and the 

generalized inverse multiquadric (GIMQ) RBFs, while the 

resulting system of ODEs are integrated using the fourth order 

Runge-Kutta method. This Example is implemented in 

MATLAB using a time step size of   and 

respectively to advance the solution up to the 

final time  the result is recorded in Table 2, while 

the graphical display of the initial profile and the different 

RBF-MOLs are displayed in Figures . 
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Fig. 1:   Computational Domain and Data Points Locations on (a) 

Equally Spaced Data Points (b) Scattered Data Points (c) 

Complex Domain 



                         International Journal of Engineering Applied Sciences and Technology, 2019    

                                                Vol. 4, Issue 2, ISSN No. 2455-2143, Pages 7-15 
                            Published Online June 2019 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    

 

12 

 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-1

-0.5

0

0.5

1

 
                                                      (a) 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-1

-0.5

0

0.5

1

 
     (b) 

-1
-0.5

0
0.5

1
1.5

-2

-1

0

1

2
-1

-0.5

0

0.5

1

 (c) 
Fig. 2:     Initial Profile for the two-dimensional heat equation on    

(a) Equally Spaced Data Points (b) Scattered Data Points 

(c) Complex Domain 
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Fig. 3: Solution of the two-dimensional heat equation using      

(a) MQ, (b) IQ, (c)   GIMQ RBF-MOLs at the Final Time, 

 on Equally Spaced Data Points 
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Fig. 4: Solution of the two-dimensional heat equation using (a) MQ,    

(b) IQ, (c) GIMQ RBF-MOLs at the Final Time,  on 

Scattered Spaced Data Points 
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Fig. 5: Solution of the two-dimensional heat equation using (a) MQ, 

(b) IQ, (c)   GIMQ RBF-MOLs at the Final Time, 

 on a Complex Domain 
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Table 2: Summary of MQ, IQ and GIMQ RBF-MOLs for the 2D 

Heat Equation 

 

                    

Table 3:  Average CPU Time in Seconds for the 2D Heat 

Equation 

 
Domain/Data Points MQ IQ GIMQ 

Regular/Equally Spaced Points 26.127121 24.729393 24.034108 

Halton/Scattered Spaced Points 24.777299 22.431606 22.273862 

Complex/Scattered Spaced Points 8.951064 5.969877 7.607321 

 

IV.  DISCUSSION 

In this Section, the results of our findings are 

discussed and compared with the MQ RBF-MOLs of Sarra 

and Kansa [10], a conclusion is also drawn based on our 

findings. 

To approximate the two-dimensional heat equation 

using RBF-MOLs, both the Dirichlet boundary conditions and 

the initial condition of the two-dimensional heat equation were 

obtained from the analytic solution. Sarra and Kansa [10] 

solved this particular problem using MQ RBF-MOLs on a 

complex shaped domain comprising 310 boundary data points 

and 505 interior data points. In this work, the same problem is 

used as a test problem on the IQ and GIMQ RBF-MOLs 

formulated. Besides applying this problem on the complex 

domain, a domain consisting of equally spaced data points 

made up of 80 boundary points and 361 interior points was 

used. Also, a domain containing 80 equally spaced boundary 

points and 319 scattered data points produced using the Halton 

sequence was used. The three domains containing the three 

data points are provided in Figure 1. 

The space derivatives were discretised using the IQ 

and GIMQ RBF methods. We observed that discretizing the 

two-dimension space derivatives was similar to the 

discretization of the space derivatives in one dimension. Just a 

little more computational effort was required unlike using the 

polynomial based methods such as the FDM, FVM or FVM. 

The fourth order Runge-Kutta method was used in a similar 

way as in the case of one dimensional time-dependent PDEs to 

integrate the resulting systems of ODEs using a time step size 

of  on the domains containing equally spaced 

and scattered spaced data points, while the time step, 

 was used on the complex domain to advance 

the solution up to the final time =0.1. The results for the 

two-dimensional heat equation is displayed in Table 2 and 

Figures 2-5. 

We observed that the results in Figure 5 produced on 

the nearly optimal scattered data points was better than the 

results produced on the other two data points. Also, the results 

produced in Figure 4 on scattered that points was slightly 

better than those produced on the equally spaced domain 

displayed in Figure 3.Comparing the results of  IQ and GIMQ 

RBF-MOLs with the MQ RBF-MOLs of Sarra and Kansa [10] 

using the maximum point-wise error in Table 2 shows that the 

MQ RBF-MOLs produced the best results on the domain 

containing equally spaced data points, while the results for the 

IQ RBF-MOLs yielded the smallest point-wise error on the 

domain containing scattered data points and on the complex 

domain containing scattered data points. 

An estimate for the CPU time for the two-

dimensional heat equation was obtained by finding the 

average of three different readings and is provided in Table 3. 

The CPU time for the two-dimensional heat equation 

performed on three different domains/different patterns of data 

spacing revealed that the GIMQ RBF-MOLs had the smallest 

CPU time recorded on both the equally spaced data points and 

scattered data points, while the IQ RBF-MOLs recorded the 

least CPU time on the complex domain. It is also important to 

note from Table 3 that for all the three RBF-MOLs, the CPU 

time for the two-dimensional heat equation performed on the 

complex domain with scattered data points have the least 

timing followed by the domain containing Halton points with 

scattered points and finally on the domain containing equally 

spaced data points.  

Evaluating the performance of the RBF-MOLs using 

the point-wise error and CPU time shows that the RBF 

methods performed better on scattered data points compared 

to uniform data points. Also, since RBFs are evaluated on data 

points, these points can be scattered and arranged to form 

different patterns to give an optimal result on a complex 

domain which is difficult with the other polynomial based 

methods.  

 

V.             CONCLUSION 

Two globally supported positive definite and 

infinitely continuous radial basis functions ( RBFs), 

namely, the inverse quadratic (IQ) and the generalized inverse 

multiquadric (GIMQ) RBFs were combined with the fourth 

order Runge-Kutta method to construct radial basis function 

method of lines (RBF-MOLs). The IQ RBF-MOLs and GIMQ 

RBF-MOLs constructed were used to approximate the heat 
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equation in two space dimensions and compared the numerical 

results with the MQ RBF-MOLs. The performance of the 

proposed RBF-MOLs measured in terms of the point-wise 

error indicate that the methods performed comparably with the 

MQ RBF-MOLs of Sarra and Kansa [10]. There were some 

instances where the proposed RBF-MOLs had smaller point-

wise errors than the MQ RBF-MOLs. Also, the performance 

of the CPU time for the two-dimensional heat equation 

showed that the constructed RBF-MOLs performed 

comparably with the MQ RBF-MOLs. The performance of IQ 

and GIMQ RBF-MOLs used for solving the heat equation 

agrees with the work of Luga, et al .[17], they proposed the 

IMQ, IQ and GIMQ RBF-MOLs for approximating some 

time-dependent PDEs in one space dimension and observed 

that these RBF-MOLs compared favourably with the MQ 

RBF-MOLs of Sarra and Kansa [10]. 

Based on the results obtained from the proposed IQ 

and GIMQ RBF-MOLs, we recommend that these methods be 

applied for the solution of some time-dependent PDEs in two 

or higher dimensional space in different fields of sciences and 

engineering. Also, the IQ and GIMQ RBF methods could be 

used independently or combined with other numerically 

methods to constructed accurate hybrid numerical methods, 

since the proposed RBF-MOLs compared favourably with the 

MQ RBF-MOLs. 
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