
 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 1, ISSN No. 2455-2143, Pages 86-92
 Published Online November-December 2016 in IJEAST (http://www.ijeast.com)

86

SOFTWARE DEFECT PREDICTION USING

LEARNING to RANK APPROACH and

BOLTZMANN LEARNING APPROACH

Bhanu Priya
 Dept. of computer science and engineering

 CTITR Jalandhar, India

Sarabjit Kaur

Assistant Professor

Dept. of computer science and engineering
CTITR

Jalandhar, India

Abstarct- The software engineering is the

technology to process the software and perform

various operations on that software . The testing

the important application of software engineering

in which test cases are applied to detect defects

from the software . In the recent times, it is been

analyzed that defects may also raised in the test

cases which are used for the defect prediction. In

this work, Rank-to-learn algorithm is applied for

the prediction of defects from the software. To

improve performance of Rank-to-learn algorithm

in terms of defect prediction rate the technique of

back propagation is applied which learn from the

precious experience and drive new values. The

system is tested on 10 test cases and simulation is

performed in MATLAB. The simulation results

show that the defect prediction rate is increased

and execution time is reduced.

Keywords -Defects, test Cases, neural networks,

Boltzmann learning, learning to rank approach

I. INTRODUCTION

Software defects can lead to undesired results. To

predict defective files, a prediction model must be

built with predictors (e.g., software metrics) obtained

from either a project itself (within-project) or from
other projects (cross-project). A universal defect

prediction model that is built from a large set of

diverse projects would relieve the need to build and

tailor prediction models for an individual project. The

current software defects prediction mainly uses the

software metrics to predict the amount and

distribution of the software defects. The research

method of software defects classification prediction

is based on the program properties of the historical

software versions, to build different prediction models

and to forecast the defects in the coming versions. We

can divide this technique into three parts: the

software metrics, the classifier and the evaluation of

the classifier [10].

A software defect alludes to a defect in a system. An

error is irregularity between the observed

performance of a system and its specified
performance. A software failure happens when the

delivered product deviates from correct service and

perform sudden behavior from user requirements. A

software defect or error may not necessarily cause a

software failure. Defect prediction is recognizing that

a problem has occurred, regardless of the possibility

that you don't have a clue about the reason. Defects

might be predicted by a variety of quantitative or

qualitative approaches. This includes a number of the

multivariable, model-based approaches. Defect

diagnosis is investigating at least one root causes of
problems to the point where corrective action can be

taken. This is additionally referred to as "defect

isolation", particularly when need to demonstrate the

distinction from defect prediction. A "defect" or

"problem does not need to be the result of a complete

failure of a software product. In a procedure plant,

root causes of non-optimal operation may be

hardware failures however problems may likewise be

caused by poor decision of operating targets, poor

feedstock quality or human error.

Software Based Defect Prediction Techniques

1. Algorithm Based Defect Tolerance (ABFT):-
ABFT is used for detecting, locating, and correcting

defects with a software procedure. It exploits the

structure of numerical operations. This approach is

effective however lacks of generality. It is

appropriate for applications utilizing regular

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 1, ISSN No. 2455-2143, Pages 86-92
 Published Online November-December 2016 in IJEAST (http://www.ijeast.com)

87

structures, and in this manner it is used for a limited

arrangement of problems.
2. Assertions:- Assertions or the logic statements

embedded at various points in the program reflect

invariant relationships between the variables of the

program and they regularly prompt to different

problems as assertions are not transparent to a

programmer and their effectiveness depends on the

way of an application and on a programmer's

capacity.

3. Control Flow Checking (CFC):- The fundamental

task of CFC is to partition an application program in

essential blocks or the without branch parts of code.

A deterministic signature (or number) is assigned to
every block and defects are predicted by comparing

the run-time signature with a pre-computed one. In

most CFC strategies one of the significant problems

is to tune the test granularity that ought to be used.

4. Procedure Duplication (PD):- The programmer

decides to duplicate the most critical procedures and

to compare the got results on executing the

procedures on two distinct processors. This approach

requires a programmer to choose which procedures to

be duplicated and to introduce legitimate checking on

the results. These code modifications are done
manually and might introduce errors.

5. Error Prediction by Duplicated Instructions

(EDDI):- Computation results from master and

shadow instructions are compared before writing to

memory. Upon mismatch, the program jumps to an

error handler that will cause the program to restart.

EDDI has high error coverage at the cost of

performance penalty because of time redundancy as

introduced into the system. Since we use general

purpose registers as shadow registers, more register

spilling happens with EDDI. Additional spilling

causes more performance overhead since it increases
the number of memory operations.

6. Software Implemented Error Prediction and

Correction (EDAC):- Software Implemented EDAC

approaches (e.g., Cyclic Redundancy Checks or

CRC, Hamming Codes, Bose-Chaudhuri-

Hocquenghem or BCH and so forth,) are effective in

error prediction yet they suffer from high time

overhead. Hamming, BCH and RS codes have

pleasant mathematical structures. In any case, there is

a limitation with regards to code lengths.

7. Periodic Memory Scrubbing:- This approach
depends on periodic reloading of code on

fundamental memory from an immutable memory.

This is effective for protecting the code segment of

Operating system and application programs.

Performance penalty is because of repetitive memory

reading.

8. Masking Redundancy:- This approach implies

running an application in the presence of defects.
Couple of processors is used to run a similar program

and vote to identify errors in any single processor.

Errors can be masked from application software. No

software rollbacks are required to fix errors.

9. Reconfiguration:- This implies removing failed

modules from the system. At the point when failure

happens in a module, its impacts on the rest of the

segments of the system which are isolated. A

substantial number of functional modules are used,

which are switched automatically to replace a failing

module.

10. Replication:- This ensures reliability however is
expensive regarding hardware or runtime cost. The

idea is to take a majority vote on a calculation

replicated N times. Its software solution requires

every processor to run N copies of surrounding

computations and afterward vote on the result. This

backs off the computation by no less than a factor of

N.

11. Restore Architecture:- Transient errors or soft

errors are predicted through time redundancy in the

ReStore architecture. The novelty of the ReStore

architecture is the use of transient error symptoms,
for example, memory protection violation and

incorrect control flow etc.

12. Dual Modular Redundancy (DMR) & Backward-

Error Recovery (BER) & Checkpoint:- Error is

predicted through differences in execution across a

dual modular redundant (DMR) processor pair. DMR

is a backward-error recovery (BER) technique where

two processors are used to detect errors in execution.

II. LITERATURE SURVEY

Gao K. et al. [2007] proposed that how count models

based upon poisson regression model and negative

binomial regression model can be used for software

defect predictions. It evaluates the comparative

hypothesis testing, model selection and performance

evaluation for the count models [3]. Zimmermann T.

et al. [2007] mapped defects from the bug database of

Eclipse to source code locations. The resulting data

set lists the number of pre and post release defects for
every package and file in the Eclipse releases 2.0,

2.1, and 3.0 [4]. Lessmann S. et al. [2008] improved

software quality and testing efficiency by

constructing predictive classification models from

code attributes to enable a timely identification of

defect-prone modules. Several classification models

have been evaluated for this task [5]. Moser R. et al.

[2008] identified a comparative analysis of the

predictive power of two different sets of metrics for

defect prediction. It choose one set of product related

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 1, ISSN No. 2455-2143, Pages 86-92
 Published Online November-December 2016 in IJEAST (http://www.ijeast.com)

88

and one set of process related software metrics and

use them for classifying Java files of the Eclipse
project as defective respective defect-free [6].

D'Ambros M. et al. [2011] described the performance

of the approaches using different performance

indicators: classification of entities as defect-prone or

not, ranking of the entities, with and without taking

into account the effort to review an entity [11]. Rawat

S. et al. [2012] introduced causative factors which in

turn suggest the remedies to improve software quality

and productivity. The paper also showcases on how

the various defect prediction models are implemented

resulting in reduced magnitude of defects [13]. Yang

X. et al. [2012] presented the ranking approach for
allocating testing resources to software modules. In

this paper predicting models can be used for predict

the defects. This paper only concerned with the

construction of models, which include the ranking

performance measure in the objective function,

perform better in predicting defect-proneness

rankings of multiple modules [16]. Yang X. et al.

[2015] proposed a linear LTR approach. In this paper

LTR approach can be compared with different count

models. LTR approach provides better results than

the different count models. This approach increases
the performance of software. A learning-to-rank

approach to construct software defect prediction

models by directly optimizing the ranking

performance. It shows comparison of the learning -

to-rank method against other algorithms that have

been used for predicting the order of software

modules according to the predicted number of defects

[17].

III. LEARNING TO RANK ALGORITHM

Learning to rank method refers to machine learning

techniques for training the model in a ranking task.

LTR approach can be used for measure the model

performance. LTR is a linear model which is used for

optimizing the ranking performance directly. LTR

model is mostly used as compare to other models
LTR approach can be also compare with the existing

non-linear models. In LTR approach trained data can

be used. LTR approach cans also works on different

data sets. LTR is useful for many applications in

information retrieval, Natural language processing

and data mining. The LTR approach obtains a linear

model by optimizing the ranking performance

directly. The LTR approach can work with different

models. Count models can be used with the LTR

approach. Different data sets can be used in LTR

approach for evaluating ranking of the software

defects. We provide a comprehensive evaluation and
comparison of the LTR approach against more

algorithms for constructing SDP models for the

ranking task. In previous work LTR approach can be
compared with many other methods [17].

Many learning-to-rank algorithms can fit into the

above framework. Keeping in mind the end goal to

better comprehend them, a categorization is

performed on these algorithms.

a. The pointwise approach: The input space of the

pointwise approach contains the feature vector of

every single document. The output space contains the

relevance degree of every single document. The

hypothesis space contains functions that take the

feature vector of a document as the input and predict

the relevance degree of the document. The loss

function examines the accurate prediction of the

ground truth label for every single document. In

different pointwise ranking algorithms, ranking is
displayed as regression, classification, and ordinal

regression.

b. The pairwise approach: The input space of the

pairwise approach contains a pair of documents, both

represented as feature vectors. The output space

contains the pairwise preference (which takes values

from {1,−1}) between every pair of documents. The

hypothesis space contains bi-variate functions h that
take a pair of documents as the input and output the

relative request between them.

c. The listwise approach: The input space of the

listwise approach contains the entire group of

documents connected with query q. There are two

sorts of output spaces utilized as a part of the listwise

approach. For some listwise ranking algorithms, the

output space contains the relevance degrees of the
considerable number of documents connected with a

query.

IV. BOLTZMANN LEARNING

Boltzmann machines are systems of symmetrically
connected units that settle on stochastic decisions

about whether to be on or off. They have a simple

learning algorithm that permits them to discover

complex distributions behind observed data. Learning

or inference in Boltzmann machines is imperative for

many scientific tasks. For inference problems, the

weights on connections and thresholds are settled and

are utilized to represent a cost function. Inference in

the Boltzmann machines is frequently utilized as a

tool for some advancement problems, including

troublesome combinatorial problems that have a
place with NP finish or - hard issue classes, for

example, the traveling salesman issue. Learning in

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 1, ISSN No. 2455-2143, Pages 86-92
 Published Online November-December 2016 in IJEAST (http://www.ijeast.com)

89

Boltzmann machines requires expectations of one

unit as well as correlations between two units.
Accordingly, the precise estimation of the

correlations is essential.

It has been realized that the linear response

approximation (LRA) improves the accuracy of

correlations estimated by the mean field strategy.

Utilizing such approximation methods inside learning

systems amounts to match the empirical moments, to

those acquired by the inexact inference methods.
Hence, the inexact learning algorithms, with or

without the LRA, are technically in light of the

concept of pseudo-moment matching. Pseudo-

moment matching problems, including the learning

algorithm of Boltzmann machines, have likewise

been addressed by a few researchers. The accuracy of

probabilistic inference systems constructed by joining

the BP algorithm with the LRA is investigated and

concluded that the LRA can improve the estimation

of correlations by including the impacts of loops in a

particular system to the BP algorithm.

The global energy, E, in a Boltzmann machine is

identical

Where, wij is the connection strength between unit j

and unit i.

si is the state, si {0,1}, of unit i.

ϴi is the bias of unit i in the global energy function.

Often the weights are represented in matrix form with

a symmetric matrix W, with zeros along the diagonal.

V. PROPOSED METHODOLOGY

The defect prediction is the technique which is

applied to predict the percentage of defects in the test

cases. This work is based on to detect defects from

the test cases using learn-to-rank algorithm. The

learn-to-rank algorithm is based on three steps. The
first step is selection of population. The second step

is calculation of mutation value. The last step is

calculation of fitness value. The calculation of fitness

value depends upon the initial population value

which is selected randomly. In this work, Back

Propagation technique is applied in which system

learns from the experience values and derives new

values. The selection of population value is not

random. It depends upon the system condition which

is derived using back propagation algorithm.

a. Proposed Algorithm

 Init population P (t)

 evaluate P (t);

 t := 0;

Network ConstructNetworkLayers()

 InitializeWeights(Network, test cases)

For (i=0;i=test cases; i++)

 Select Input Pattern(Input defect values)

 Forward Propagate(p)

 Backward Propagate Error(P)

 Update Weights(P)

End

Return (P)

 while not done do

 t := t + 1;

 P' := test case P (t);

 recombine P' (t);

mutate P' (t);

 evaluate P' (t);

 P := survive P,P' (t);

 end

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 1, ISSN No. 2455-2143, Pages 86-92
 Published Online November-December 2016 in IJEAST (http://www.ijeast.com)

90

NO

 YES

 Fig 1: Proposed Flow chart

VI. SIMULATION RESULTS

The Rank-to-rank and improved Rank-to-learn

algorithms are implemented in MATLAB. The

dataset is considered for the implementation which is

described in the table 1

Attributes Values

Number test cases 10

Repeated Test cases No

Defect in the Test cases Yes

Number of applications 1

 Table 1: Properties of dataset

The proposed algorithm is implemented and interface

is designed for the implementation which is described

in the figures shown below

 Fig 1: Interface is designed for implementation

As shown in figure 1, the interface is designed for the

implementation of rank-to-learn and improved rank-

learn algorithm. In the interface ten test cases are

shown in which is executes existing and proposed

algorithm. The result in analyzed in terms of defect

prediction rate.

 START

Generate test cases of selected software

Check the initial ranking of the test cases

Apply learning to rank approach on test cases

Apply Boltzmann learning technique by using

APFD metrics

Desire value

achieved

Compare results of learning-to-rank approach

with boltzman learning

 STOP

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 1, ISSN No. 2455-2143, Pages 86-92
 Published Online November-December 2016 in IJEAST (http://www.ijeast.com)

91

 Fig 2: Comparison Graph

As illustrated in figure 2, the comparison graph is

drawn between proposed and exiting algorithm. The

existing algorithm is Rank-to-learn algorithm and

proposed algorithm is improved Rank-to-learn

algorithm. When the back propagation algorithm is

implemented with Rank-to-learn algorithm the defect

prediction rate is improved as shown the graph .

VII. CONCLUSION

Defect prediction is the testing technique which is

applied to detect defects from the software or from

the input test cases. The Rank-to-learn is the

algorithm which is applied for the defects in the

software. This algorithm selects population randomly

which reduce defect prediction rate. In this work,

technique of back propagation is applied in which

system learns from the previous experiences and

drive new values. This leads to improve defect

prediction rate and reduce execution time . In future
technique will be proposed which is based on bio-

inspired techniques for the defect prediction rate

VIII. REFERENCES

[1] Graves T. L. , Karr A. F. , Marron J. S. , and Siy

H. , “Predicting defect incidence using software

change history,” in Proc. IEEE Trans. Softw. Eng.,

Vol.26, no. 7, pp. 653–661, 2000.

[2] Ostrand T. J., Weyuker E. J., and Bell R. M.,
“Predicting the location and number of defects in

large software systems,” IEEE Trans. Softw. Eng.,

Vol. 31, no. 4, pp. 340–355, 2005.

[3] Gao K. and Khoshgoftaar T.M. , “A

comprehensive empirical study of count models for

software defect prediction,” in Proc. IEEE 28th Int.

Conf. Trans. Rel., Vol. 56, no. 2, pp. 223–236, June.

2007.

[4] Zimmermann T. , Premraj R. , and Zeller A. ,

“Predicting defects for eclipse,” in Proc. IEEE Int.
Workshop Predictor Models in Software

Engineering(PROMISE'07), pp. 9–15, 2007.

[5] Jiang Y. , Cukic B. , and Ma Y. , “Techniques for

evaluating defect prediction models,” in Proc.

Empiric. Softw. Eng., Vol. 13, no. 5, pp. 561–595,

2008.

[6] Lessmann S. , Baesens B. , Mues C. , and Pietsch

S. , “Benchmarking classification models for

software defect prediction: A proposed frame work
and novel findings,” in Proc. IEEE Trans. Software

Engineering., Vol. 34, no. 4, pp. 485–496, 2008.

[7] Moser R. , Pedrycz W. , and Succi G. , “A

comparative analysis of the efficiency of change

metrics and static code attributes for defect

prediction,” in Proc. ACM/IEEE 30th Int. Conf.

Software Engineering, pp. 181–190 , Dec.2008.

 [8] Mende T. , and Koschke R. , “Revisiting the

evaluation of defect prediction models,” in Proc. 5th

Int. Conf. Predictor Models in Software Engineering,
2009, pp. 1–10.

[9] Arisholm E. , Briand L. C. , and Johannessen E.

B., “A systematic and comprehensive investigation of

methods to build and evaluate defect prediction

models,” in Proc. J. Syst. Softw., Vol. 83, no. 1, pp.

2–17, 2010.

[10] Weyuker E.G. , Ostrand T. J. and Bell R. M. ,

“Comparing the effectiveness of several modeling

methods for defect prediction,” in Proc. IEEE Int. J.
Empiric. Softw. Eng., Vol. 15, no. 3, pp. 277–295,

2010.

[11] D'Ambros M. , Lanza M. , and. Robbes R. ,

“Evaluating defect prediction approaches:A

benchmark and an extensive comparison,” in Proc.

IEEE Conf. Softw. Eng., pp. 1–47, 2011.

0

5

10

15

20

25

30

35

40

45

50
20

40

60

80

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

%
 o

f
fa

u
lt

No of iterations

Fault Detection

ELTR

LTR

 International Journal of Engineering Applied Sciences and Technology, 2016
 Vol. 2, Issue 1, ISSN No. 2455-2143, Pages 86-92
 Published Online November-December 2016 in IJEAST (http://www.ijeast.com)

92

[12] Wang H. , Khoshgoftaar T. M. , and Seliya N. ,
“How many software metrics should be selected for

defect prediction,” in Proc. 24th Int. Florida

Artificial Intelligence Research Society Conf., pp.

69–74, 2011.

[13] Khoshgoftaar T. M. , Gao K. , and Napolitano

A. , “An empirical study of feature ranking

techniques for software quality prediction,” in Proc.

IEEE Int. J. Softw. Eng. Knowl. Eng., Vol. 22, no. 2,

pp. 161–183, 2012.

[14] Wang Y. , Cai Z. , and Zhang Q. , “Differential
evolution with composite trial vector generation

strategies and control parameters,” in Proc. IEEE

Trans. Evol. Computat., Vol. 15, no. 1, pp. 55–66,

2011.

[15] Rawat S. M, Dubey K .S, “Software Defect

Prediction Models for Quality Improvement: A

Literature Study”, in Proc. International Journal of

Computer Science Issues, Vol. 9, Issue 5, No 2,

September 2012 ISSN (Online): 1694-0814.

[16] Yang X. , Tang K. , and Yao X. , “A effective

algorithm for constructing defect prediction models,”

Int. J. in Intelligent Data Engineering and Automated

Learning-IDEAL, pp. 167–175, 2012.

